
DEVELOPING CROSS-PLATFORM AUDIO AND MUSIC APPLICATIONS
WITH THE CLAM FRAMEWORK

Xavier Amatriain Pau Arumı́

CREATE, Dept. of Music
University of California
Santa Barbara CA 93106

USA
{xavier@create.ucsb.edu}

Music Technology Group
Universitat Pompeu Fabra

08003 Barcelona,
Spain

{parumi@iua.upf.es}

ABSTRACT

CLAM is a C++ framework that offers a complete devel-
opment and research platform for the audio and music do-
main. Apart from offering an abstract model for audio
systems, it also includes a repository of processing algo-
rithms and data types as well as a number of tools such as
audio or MIDI input/output.

All these features can be exploited to build cross-
platform applications or to build rapid prototypes to test
signal processing algorithms.

In this article we will review the main features included
in the framework. We will also present some of the ap-
plications that have been developed and can be used by
themselves. We will finally introduce the newest tools that
have been added in order to use the framework as a rapid
prototyping tool.

1. INTRODUCTION

CLAM stands for C++ Library for Audio and Music and
it is a full-fledged software framework for research and
application development in the audio and music domain.
It offers a conceptual model; algorithms for analyzing,
synthesizing and transforming audio signals; and tools
for handling audio and music streams and creating cross-
platform applications.

The initial objective of the CLAM project was to
offer a complete, flexible and platform independent
sound analysis/synthesis C++ platform to meet the needs
of all the projects of the Music Technology Group
(www.iua.upf.es/mtg) at the Universitat Pompeu Fabra in
Barcelona.

But the library is no longer seen as an internal tool
for the MTG but rather as a publicly distributed frame-
work licensed under the GPL [12]. CLAM became pub-
lic and Free in the course of the AGNULA IST European
project [8]. Some of the resulting applications as well as
the framework itself were included in the Demudi dis-
tribution. CLAM is now Free Software and all its code
and documentation can be obtained through its web page
(www.iua.upf.es/mtg/clam).

The CLAM framework is cross-platform. All the
code is ANSI C++ and it is regularly compiled under
GNU/Linux, Windows and Mac OSX using the GNU C++
compiler but also the Microsoft compiler.

CLAM offers a processing kernel that includes an in-
frastructure and processing and data repositories.

In that sense, CLAM is both a black-box and a white-
box framework [22]. It is black-box because already built-
in components included in the repositories can be con-
nected with minimum programmer effort in order to build
new applications. And it is white-box because the abstract
classes that make up the infrastructure can be easily de-
rived to extend the framework components with new pro-
cesses or data classes.

2. THE CLAM INFRASTRUCTURE

The CLAM infrastructure is defined as the set of abstract
classes that are responsible for the white-box functionality
of the framework and define a related metamodel 1 . This
metamodel is very much related to the Object-Oriented
paradigm and to Graphical Models of Computation as it
defines the object-oriented encapsulation of a mathemati-
cal graph that can be effectively used for modeling signal
processing systems in general and audio systems in par-
ticular.

The metamodel clearly distinguishes between two dif-
ferent kinds of objects: Processing objects and Processing
Data objects. Out of the two, the first one is clearly more
important as the managing of Processing Data constructs
can be almost transparent for the user. Therefore, we can
view a CLAM system as a set of Processing objects con-
nected in a graph called Network.

2.1. Processing infrastructure

Processing objects are connected through intermediate
channels. These channels are the only mechanism for
communicating between Processing objects and with the

1 The word metamodel is here understood as a “model of a family of
related models”, see [2] for a thorough discussion on the use of meta-
models and how frameworks generate them.



Figure 1. CLAM processing detailed representation

outside world. Messages are enqueued (produced) and de-
queued (consumed) in these channels, which act as FIFO
queues.

In CLAM we clearly differentiate two kinds of con-
nection mechanisms: ports and controls. Ports transmit
data and have a synchronous data flow nature while con-
trols transmit events and have an asynchronous nature. By
synchronous, we mean that messages get produced and
consumed at a predictable —if not fixed— rate. And by
asynchronous we mean that such a rate doesn’t exist and
the communication follows an event-driven schema.

Figure 1 is a representation of a CLAM processing
object. If we imagine, for example, a processing that
performs a frequency-filter transformation on an audio
stream, it will have an input and an out-port for the in-
coming audio stream and processed output stream. But
apart from the incoming and outcoming data, some other
entity —probably the user through a GUI slider— might
want to change some parameters of the algorithm.

This control data (also called events) will arrive, unlike
the audio stream, sparsely or in bursts. In this case the pro-
cessing will receive these control events through various
(input) control channels: one for the gain amount, another
for the frequency, etc.

The data flows through the ports when a processing is
fired (by receiving a Do() message).

Processing objects can consume and produce at differ-
ent rates and consume an arbitrary number of tokens at
each firing. Connecting these processing objects is not a
problem as long as the ports are of the same data type. The
connection is handled by a FlowControl entity that figures
out how to schedule the firings in a way that avoids firing
a processing with not enough data in its input ports or not
enough space into its output ports.

2.1.1. Configurations

Apart from the input controls, a processing object receives
another kind of parameter: the configurations.

Configuration parameters, unlike controls, produce ex-
pensive or structural changes in the processing. For in-
stance, a configuration parameter may include the number
of ports that a processing will have or the numbers of to-
kens that will be produced in each firing. Therefore, and
as opposed to controls that can be received at any time,
configurations can only be set into a processing when this
is not in running state.

CLAM configurations make use of the framework’s
data infrastructure and offer services such as automatic
built-in persistence or homogeneous interface.

2.1.2. Static vs. dynamic processing compositions

When working with large systems we need to be able to
group a number of independent processing objects into a
larger functional unit that may be treated as a new pro-
cessing object in itself.

This process, known as composition, can be done in
two different ways: statically or at compile time, and dy-
namically or at run time (see [9]). Static compositions in
CLAM are called Processing Composites while dynamic
compositions are called Networks. In both cases inner
ports and controls can be published to the parent process-
ing.

Choosing between Processing Composites and Net-
works is a trade-off between boosting efficiency or under-
standability and flexibility.

But another important difference is that while in a Pro-
cessing Composite the developer is in charge of handling
most of the internal flow and data management, Networks,
as we will see in the next paragraphs, can offer an ad-
vanced level of automation.



Figure 2. a CLAM processing network

In Processing Networks the instantiation of concrete
processing objects is possible by simply passing string
identifiers to a factory. Static factories are a well docu-
mented C++ idiom [1] that make the process of adding or
removing processings to the repository as easy as issuing
a single line of code in the processing class declaration.

Apart from helping in the instantiation process, the
Network class offers interface for connecting the process-
ing objects and, most important, it automatically controls
their firing (calling its Do method). Actually, the firing
scheduling can follow different strategies, for example a
push strategy starting firing the up-source processings, or
a pull strategy where we start querying for data to the
most down-stream processings, as well as being dynamic
or static (fixed list of firings). See [16, 19] for more details
on scheduling dataflow process networks.

To accommodate all this variability CLAM offers dif-
ferent FlowControl sub-classes which are in charge of the
firing strategy, and are pluggable to the Network process-
ing container.

3. THE CLAM REPOSITORIES

The Processing Repository contains a large set of ready-
to-use processing algorithms, and the Processing Data
Repository contains all the classes that act as data con-
tainers to be input or output to the processing algorithms.

The Processing Repository includes around 150 differ-
ent Processing classes, classified in the following cate-
gories: Analysis, ArithmeticOperators, AudioFileIO, Au-
dioIO, Controls, Generators, MIDIIO, Plugins, SDIFIO,
Synthesis, and Transformations.

Although the repository has a strong bias toward
spectral-domain processing because of our group’s back-
ground and interests, there are enough encapsulated algo-
rithms and tools so as to cover a broad range of possible
applications.

On the other hand, in the Processing Data Repository
we offer the encapsulated versions of the most commonly
used data types such as Audio, Spectrum, SpectralPeaks,
Envelope or Segment. It is interesting to note that all of
these classes make use of the data infrastructure and are
therefore able to offer services such as a homogeneous
interface or built-in automatic XML persistence.

4. TOOLS

Apart from the infrastructure and the repositories, which
together make up the CLAM processing kernel CLAM
also includes a number of tools that can be necessary to
build an audio application.

4.1. XML

Any CLAM Component can be stored to XML as long as
StoreOn and LoadFrom methods are provided for that
particular type. Furthermore, Processing Data and Pro-
cessing Configurations –which are in fact Components–
make use of a macro-derived mechanism that provides au-
tomatic XML support without having to add a single line
of code [14].

4.2. GUI

Just as many frameworks, CLAM had to think about ways
of integrating the core of the framework tools with a
graphical user interface that may be used as a front-end
to the framework functionalities. The usual way to work
around this issue is to decide on a graphical toolkit or
framework and add support to it, offering ways of con-
necting the framework under development to the widgets
and other graphical tools. The CLAM team, however,
aimed at offering a toolkit-independent support. This is
accomplished through the CLAM Visualization Module.

This general Visualization infrastructure is completed
by some already implemented presentations and widgets.
These are offered both for the FLTK toolkit [10] and the
qt framework [24]. An example of such utilities are con-
venient debugging tools called Plots. Plots offer ready-to-
use independent widgets that include the presentation of
the main Processing Data in the CLAM framework such
as audio, spectrum, spectral peaks. . .

4.3. Platform Abstraction

Under this category we include all those CLAM tools
that encapsulate system-level functionalities and allow
a CLAM user to access them transparently from the
operating system or platform.

Using these tools a number of services –such as Au-
dio input/output, MIDI input/output or SDIF file support–
can be added to an application and then used on different
operating systems without changing a single line of code.



5. CLAM APPLICATIONS

The framework has been tested on —but also has been
driven by— a number of applications, for instance: SM-
STools, a SMS Analysis/Synthesis graphical tool; Salto
[15], a sax synthesizer; Rappid [23] a real-time processor
used in live performances.

5.1. SMS Analysis/Synthesis

At the time CLAM was started the MTG’s flagship ap-
plications were SMSCommandLine and SMSTools. As a
matter of fact one of the main goals when starting CLAM
was to develop the substitute for those applications. The
SMS Analysis/Synthesis example substitutes those appli-
cations and therefore illustrates the core of the research
being carried out at the MTG.

The application has three different versions: SM-
STools, which has a FLTK graphical user interface; SM-
SConsole, which is a command-line based version; and
SMSBatch, which can be used for batch processing a
whole directory. Out of these three it is clearly the graph-
ical version that can find more usages, the other two are
only used for very specific problems.

The main goal of the application is to analyze, trans-
form and synthesize back a given sound. For doing so, it
uses the Sinusoidal plus Residual model [4]. In order to
do so the application has a number of possible inputs:

1. An XML configuration file that is used to configure
both the analysis and synthesis processes.

2. An SDIF [27] or XML analysis file that is the result
of a previously performed and stored analysis.

3. A Transformation score in XML format. This file
includes a list of all transformations that will be applied to
the result of the analysis and the configuration for each of
the transformations.

Note that all of them can be selected and generated at
run-time from the user interface in the SMSTools version.

From these inputs, the application is able to generate
the following outputs:

1. An XML or SDIF Analysis data file.
2. An XML Melody file that is extracted from a mono-

phonic melodic input.
3. Output sound separated into three different outputs:

global sound, sinusoidal component, and residual compo-
nent.

Therefore, apart from simply storing the result of the
analysis, the input sound can be synthesized back, sepa-
rating each component: residual, sinusoidal, and the sum
of both.

To transform your sound an XML transformation score
must be loaded or created using the graphical transforma-
tion editor available in SMSTools. Although a repository
of SMSTransformations – that includes some such as pitch
shifting, time-stretching or morph – new transformations
can be implemented and added to the CLAM repository
very easily.

Figure 3. The SMSTools graphical user interface

Figure 4. The Salto GUI

5.2. SALTO

SALTO is a software based synthesizer that is also based
on the SMS technique. It implements a general architec-
ture for these synthesizers but it is currently only prepared
to produce high quality sax and trumpet synthesis. Pre-
analyzed data are loaded upon initialization. The synthe-
sizer responds to incoming MIDI data or to musical data
stored in an XML file. Output sound can be either stored
to disk or streamed to the sound card on real-time. Its GUI
allows to modify synthesis parameters on real-time.

The synthesizer uses a database of SDIF files that con-
tain the result of previous SMS analysis. These SDIF files
contain spectral analysis samples for the steady part of
some notes, the residual and the attack part of the notes.
These SDIF files can be viewed, transformed and synthe-
sized with the previously explained SMSTools.

Apart from this SDIF input, SALTO has three other
possible inputs: MIDI, an XML Melody, and the GUI.
Using MIDI as an input SALTO can be used as a regu-



Figure 5. The Spectral Delay

lar MIDI synthesizer on real-time. SALTO is prepared to
accept MIDI messages coming from a regular MIDI key-
board or a MIDI breath controller. On the other hand if
an XML melody is used as an input this melody is syn-
thesized back. Finally the GUI can be basically used to
control the way the synthesis is going to work and to test
configurations by generating single notes.

5.3. Spectral Delay

SpectralDelay is also known as CLAM’s Dummy Test. In
this application it was not important to actually implement
an impressive application but rather to show what can be
accomplished using the CLAM framework. Special care
has been taken on the way things are done and why they
are done.

The SpectralDelay implements a delay in the spectral
domain, what basically means that the input audio signal
can be divided into three bands and each of these bands
can be delayed separately, obtaining interesting effects.

The core of the process is an STFT that performs
the analysis of the input signal and converts it to the
spectral domain. The signal is synthesized using a
SpectralSynthesis Processing that implements the
inverse process. It is transformed – i.e. filtered and de-
layed – , in between these two steps, in the spectral do-
main.

The graphical interface depicted in Figure 5 controls
the frequency cut-offs and gains of the filters and the delay
times of the delays.

5.4. Others

Apart from the main sample applications CLAM has been
used in many different projects that are not included in the
public version either because the projects themselves have
not reached an stable stage or because their results are pro-
tected by non-disclosure agreements with third parties. In
this section we will outline these other users of CLAM.

Rappid [23] is a testing workbench for the CLAM
framework in high demanding situations. The first version

Figure 6. The Vocal Processor

of Rappid implements a quite simple time-domain ampli-
tude modulation algorithm. Any other CLAM based al-
gorithm, though, can be used in its place. The most inter-
esting thing about Rappid is the way that multithreading
issues are handled, using a watchdog mechanism.Rappid
has been tested in a live-concert situation. Gabriel Brnic
used Rappid as a essential part of his composition for harp,
viola and tape, presented at the Multiphonies 2002 cycle
of concerts in Paris.

The Time Machine project implemented a high qual-
ity time stretching algorithm that was later integrated and
included in a commercial product. The algorithm uses
multi-band processing and works in real-time. It is a clear
example of how the core of CLAM processing can be used
in isolation as it lacks of any GUI or audio input/output in-
frastructure.

The Vocal Processor (see figure 6) is a prototype also
developed for a third party. It is a VST plug-in for singing
voice transformations. It includes transformations such as
smart harmonization, hoarseness, whispering or formant
change. This prototype was a chance to test CLAM in-
tegration into VST API and also to check the efficiency
of the framework in highly demanding situations. Most
transformations are implemented in the frequency domain
and the plug-in must work in real-time, consuming as few
resources as possible.

The CUIDADO IST European project [26] was com-
pletely developed with CLAM. The focus of the project
was on automatic analysis of audio files. In particu-
lar rhythmic and melodic descriptions were implemented.
The CLAM code was integrated as a binary dll into a com-
mercial product named the Sound Palette. The algorithms
and research applications are currently being integrated
into the CLAM project and incorporated into standalone
sample applications such as the Swinger, an application
that computes rhythmic descriptors from a sound file and
applying a time-stretching algorithm is able to change the
swing of the piece.



The Open Drama project was another IST European
project that used CLAM extensively. The project focus
was on finding new interactive ways to present opera. In
particular, a prototype application called MDTools was
built to create an MPEG-7 compliant description of a com-
plete opera play.

The AudioClass project aims at building automatic
tools for managing large collections of audio effects.
Analysis algorithms implemented in CLAM have been in-
tegrated and are called from a web application. The results
are then added to a large metadata database.

Also CLAM is being used for educational purposes in
different ways. On one hand, it is the base for a course
on Music and Audio Programming. On the other hand it
is the base of many Master Thesis. In this context, it has
been used for applications such as Voice-to-MIDI conver-
sion, Timbre Space based synthesis and morph, or song
identification. All these results are by definition public
and will be integrated into the public repository.

6. CLAM AS A RAPID PROTOTYPING
ENVIRONMENT

The latest developments in CLAM have brought visual
building capabilities into the framework. These allow the
user to concentrate on the research of algorithms forget-
ting about application development. Visual patching is
also valuable for rapid application prototyping of appli-
cations and audio-plugins.

Acting as the visual builder, CLAM has a graphical
program called NetworkEditor that allows to generate an
application –or at least its processing engine– by graphi-
cally connecting objects. Another application called Pro-
totyper acts as the glue between a graphical GUI design-
ing tool (such as qt Designer) and the processing engine
defined with the NetworkEditor.

6.1. An example

We will now show how we can set up a graphical stand-
alone program in just some simple steps. The purpose
of this program is to apply some spectral transformations
in real-time with the audio taken from the audio-card and
send the result back to the audio-card. The graphical inter-
face will consist in a simple panel with different animated
representations of the result of the spectral analysis, and
three sliders to change transformation parameters.

6.1.1. First step: building the processing network

Patching with NetworkEditor is a very intuitive task to
do. See Figure 7. We can load the desired processings
by dragging them from the left panel of the window. Once
in the patching panel, processing objects are viewed as
little boxes with attached inlets and outlets representing
its ports and control. The application allows all the typi-
cal mouse operations like select, move, delete and finally,
connect ports and controls.

Figure 7. NetworkEditor, the CLAM visual builder

Figure 8. The qt Designer tool

Since CLAM ports are typed, not all out-ports are com-
patible with all in-ports. For example in the Figure 7,
the second processing in the chain is called SMSAnaly-
sisCore and receives audio samples and produces: sinu-
soidal peaks, fundamental, several spectrums (one corre-
sponding to the original audio and another corresponding
to the residual resulting of subtracting the sinusoidal com-
ponent).

Connected to SMSAnalysisCore out-ports we have
placed two processings to perform transformations: one
for controlling the gain of the sinusoidal component, and
another to control the gain of the residual component. The
resulting stream of sinusoidal and residual components
feeds another processing, SMSPitchShift, which modifies
both components performing a pitch shift.

Then the signal chain gets into the SMSSynthesis
which output the resynthesizes audio ready to feed the Au-
dioOut (which makes the audio-card to sound)

Before starting the execution of the network, we can
right click upon any processing view to open a dialog
with its configuration. For instance, the SMSAnalysis-
Core configuration includes the window type and window
size parameters among many others.



Figure 9. The final running prototype

Another interesting feature of the NetworkEditor is that
it allows loading visual plots widgets for examining the
data flowing through any out-port. Slider widgets can also
be connected to the in-control inlets.

Once the patch is finished we are ready to move on
directly to designing the graphical user interface.

6.1.2. Second step: designing the program GUI (Fig-
ure 8)

The screen-shot in Figure 8 is taken while creating a front
end for our processing network. The designer is a tool for
creating graphical user interfaces that comes with the qt
toolkit [24].

Normal sliders can be connected to processing in-ports
by just setting a suited name in the properties box of the
widget. Basically this name specify three things in a row:
that we want to connect to an in-control, the name that the
processing object has in the network and the name of the
specific in-control.

On the other hand we provide the designer with a
CLAM Plots plugin that offers a set of plotting widgets
that can be connected to out-ports.

In the example in Figure 8 the black boxes corresponds
to different plots for spectrum, audio and sinusoidal peaks
data.

Now we just have to connect the plots widgets by speci-
fying —like we did for the sliders— the out-ports we want
to inspect. We save the designer .ui file and we are ready
to run the application.

6.1.3. Third step: running the prototype (Figure 9)

Finally we run the prototyper program (see Figure 9). It
takes two arguments, in one hand, the xml file with the
network specification and in the other hand, the designer
ui file.

This program is in charge to load the network from its
xml file —which contains also each processing configura-

tion parameters— and create objects in charge of convert-
ing qt signals and slots with CLAM ports and controls.

And done! We now have a prototype that runs fast C++
compiled code without compiling a single line.

7. IS CLAM DIFFERENT?

Although other audio-related environments exist (see for
instance Max/Pd [21], CSL [20], OpenSoundWorld [7],
Marsyas [25], SndObj [17] or SuperCollider [18]) there
are some important features of our framework that make
it somehow different (see [2] for an extensive study and
comparison of most of them) :

(1) All the code is object-oriented and written in C++
for efficiency. Though the choice of a specific program-
ming language is no guarantee of any style at all, we have
tried to follow solid design principles like design patterns
[13] and C++ idioms [1], good development practices like
test-driven development [6] and refactoring [11], as well
as constant peer reviewing.

(2) It is efficient because the design decisions concern-
ing the generic infrastructure have been taken to favor ef-
ficiency (i.e. inline code compilation, no virtual methods
calls in the core process tasks, avoidance of unnecessary
copies of data objects, etc.)

(3) It is comprehensive since it not only includes
classes for processing (i.e. analysis, synthesis, transfor-
mation) but also for audio and MIDI input/output, XML
and SDIF serialization services, algorithms, data visual-
ization and interaction, and multi-threading.

(4) CLAM deals with wide variety of extensible data
types that range from low-level signals (such as audio or
spectrum) to higher-level semantic-structures (a musical
phrase or an audio segment)

(5) As stated before, it is cross-platform
(6) The project is licensed under the GPL terms and

conditions.
(7) The framework can be used either as a regular C++

library or as a prototyping tool.

8. CONCLUSIONS

CLAM has already been presented in other conferences
like the OOPSLA’02 [5, 3] but since then, a lot of progress
have been made in different directions, and specially in
making the framework more black-box and adding visual
builder tools.

CLAM has proven useful in many applications and is
becoming more and more easy to use, and so, we expect
new projects to begin using the framework even before it
has reached its first stable 1.0 release.

9. ACKNOWLEDGEMENTS

The authors wish to recognize all the people who have
contributed to the development of the CLAM framework.
A non-exhaustive list should at least include Maarten de



Boer, David Garcia, Miguel Ramı́rez, Xavi Rubio and En-
rique Robledo.

10. REFERENCES

[1] A. Alexandrescu. Modern C++ Design. Addison-
Wesley, Pearson Education, 2001.

[2] X. Amatriain. An Object-Oriented Metamodel for
Digital Signal Processing. Universitat Pompeu
Fabra, 2004.

[3] X. Amatriain, P. Arumı́, and M. Ramı́rez. CLAM,
Yet Another Library for Audio and Music Process-
ing? In Proceedings of the 2002 Conference on Ob-
ject Oriented Programming, Systems and Applica-
tion (OOPSLA 2002)(Companion Material), Seattle,
USA, 2002. ACM.

[4] X. Amatriain, J. Bonada, A. Loscos, and X. Serra.
DAFX: Digital Audio Effects (Udo Zölzer ed.), chap-
ter Spectral Processing, pages 373–438. John Wiley
and Sons, Ltd., 2002.

[5] X. Amatriain, M. de Boer, E. Robledo, and D. Gar-
cia. CLAM: An OO Framework for Developing Au-
dio and Music Applications. In Proceedings of the
2002 Conference on Object Oriented Programming,
Systems and Application (OOPSLA 2002)(Compan-
ion Material), Seattle, USA, 2002. ACM.

[6] K Beck. Test Driven Development by Example.
Addison-Wesley, 2000.

[7] A. Chaudhary, A. Freed, and M. Wright. An Open
Architecture for Real-Time Audio Processing Soft-
ware. In Proceedings of the Audio Engineering So-
ciety 107th Convention, 1999.

[8] AGNULA Consortium. AGNULA (A
GNU Linux Audio Distribution) homepage,
http://www.agnula.org, 2004.

[9] R.B. Dannenberg. Combining visual and textual rep-
resentations for flexible interactive audio signal pro-
cessing. In Proceedings of the 2004 International
Computer Music Conferenc (ICMC’04), 2004. in
press.

[10] FLTK. The fast light toolkit (fltk) homepage:
http://www.fltk.org, 2004.

[11] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[12] Free Software Foundation. Gnu general pub-
lic license (gpl) terms and conditions, 2004.
http://www.gnu.org/copyleft/gpl.html.

[13] Johnson R. Gamma E., Helm R. and Vlissides J.
Design Patterns - Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1996.

[14] D. Garcia and X. Amatrian. XML as a means of con-
trol for audio processing, synthesis and analysis. In
Proceedings of the MOSART Workshop on Current
Research Directions in Computer Music, Barcelona,
Spain, 2001.

[15] J. Haas. SALTO - A Spectral Domain Saxophone
Synthesizer. In Proceedings of MOSART Workshop
on Current Research Directions in Computer Music,
Barcelona, Spain, 2001.

[16] C. Hylands et al. Overview of the Ptolemy Project.
Technical report, Department of Electrical Engineer-
ing and Computer Science, University of California,
Berklee, California, 2003.

[17] V. Lazzarini. Sound Processing with the SndObj Li-
brary: An Overview. In Proceedings of the 4th Inter-
national Conference on Digital Audio Effects (DAFX
’01), 2001.

[18] J. McCartney. Rethinking the Computer Music Lan-
guage: SuperCollider. Computer Music Journal,
26(4):61–68, 2002.

[19] T. M. Parks. Bounded Schedule of Process Net-
works. PhD thesis, University of California at Berke-
ley, 1995.

[20] S. T. Pope and C. Ramakrishnan. The Create Signal
Library (”Sizzle”): Design, Issues and Applications.
In Proceedings of the 2003 International Computer
Music Conference (ICMC ’03), 2003.

[21] M. Puckette. Max at Seventeen. Computer Music
Journal, 26(4):31–43, 2002.

[22] D. Roberts and R. Johnson. Evolve Frameworks into
Domain-Specific Languages. In Procedings of the
3rd International Conference on Pattern Languages
for Programming, Monticelli, IL, USA, September
1996.

[23] E. Robledo. RAPPID: Robust Real Time Audio Pro-
cessing with CLAM. In Proceedings of 5th Inter-
national Conference on Digital Audio Effects, Ham-
burg, Germany, 2002.

[24] Trolltech. Qt homepage by trolltech, 2004.
http://www.trolltech.com.

[25] G. Tzanetakis and P. Cook. Audio Information Re-
trieval using Marsyas. Kluewe Academic Publisher,
2002.

[26] H. Vinet, P. Herrera, and F. Pachet. The cuidado
project. In Proceedings of the 3rd International
Symposium on Music Information Retrieval (ISMIR
2002), 2002.

[27] M. Wright. Audio applications of the sound descrip-
tion interchange format. In Proceedings of the 107th
AES Convention, 1999.


