
Amatriain and Herrera Transmitting Audio Content as Sound Objects

AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio 1

TRANSMITTING AUDIO CONTENT AS SOUND OBJECTS

XAVIER AMATRIAIN, PERFECTO HERRERA

Music Technology Group, IUA, UPF, Barcelona, Spain
xamat@iua.upf.es
perfe@iua.upf.es

As audio and music applications tend to a higher level of abstraction and to fill in the gap between the signal processing
world and the end-user we are more and more interested on processing content and not (only) signal. This change in
point of view leads to the redefinition of several “classical” concepts, and a new conceptual framework needs to be set
to give support to these new trends. In [2], a model for the transmission of audio content was introduced. The model is
now extended to include the idea of Sound Objects. With these thoughts in mind, examples of design decisions that
have led to the implementation of the CLAM framework are also given.

INTRODUCTION
As applications tend to increase their level of
abstraction and to approach the end-user level it seems
clear that one of the focuses is to step up from the signal
processing realm and directly address the content level
of an audio source. The term “content-processing” is
therefore becoming commonly accepted.[8][10] [17]
The basic idea when implementing a content processing
scheme is to have a previous analysis step in which the
content of the signal is identified and described. Then
this description can be transmitted, transformed...
Content description is usually thought of as an
additional stream of information to be attached to the
actual content. However, if we are able to find a
thorough and reliable description we can think of
forgetting about the signal and concentrate on
processing only its description. And, as it will later be

discussed, the goal of finding an appropriate content
description is very much related to the task of
identifying and describing the so-called sound objects.
Bearing these previous ideas in mind, a model of
content transmission (see Figure 1) is proposed as a
general framework for content-based applications. Any
content-based application can be seen as a subset or
particular module of this generic model.
The model is based on an analysis-synthesis process.
Therefore, the only data involved in the transmission
step is the content description taking the form of
metadata. A multilevel ‘content description tree’ is used
as an efficient representation of the identified sound
object hierarchy. Several technologies are available for
representing content description, but, taking into
account our experience in MPEG-7’s standardization
process[25], we would encourage an XML-based

Figure 1: Content object-based transmission model

Analyzer Coder Decoder Synthesizer

Content Analysis: Object
Identification

Content Description Encoding:
Object Description

Content Description Decoding:
Object Description Unwrapping

Content
Synthesis

Channel: Only Objects’
descriptions in the form of
metadata are transmitted

Amatriain and Herrera Transmitting Audio Content as Sound Objects

AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio 2

metadata language such as MPEG-7’s DDL[19].
It is interesting enough to note that such a transmission
model implies a redefinition of the schemes commonly
used to model the communication act itself [12] as it can
be seen as a step beyond Shannon and Weaver’s
traditional communication model [35] (see Figure 2). In
our model, the stream to be transmitted is no longer
seen as a stream of bits with no abstract meaning,
information is an abstraction of the actual content, in
other words, a ‘stream of meaning’.

Transmitter Channel Receiver Destination

Noise
Source

Data
Source

Figure 2: S&W traditional transmission model

1 THE SOUND OBJECT
The main goal of such as model is thus to analyze the
signal, identify sound objects and describe them in an
appropriate way. But, before getting any deeper into the
different modules that make up the model, it is
necessary to have a clear idea of what we mean when
talking about sound objects.
Maybe the most commonly accepted definition of a
Sound Object is that related to Pierre Schaefer’s
theories[29]. In [11], a Sound Object is defined as “any
sound phenomenon or event perceived as a coherent
whole (...) regardless its source or meaning”. Although
this definition might be useful from a psycho acoustical
or perceptual point of view, it is not so from an
implementation or engineering point of view.
Other explanations of an “object” from a multimedia
point of view result in definitions with a narrower scope
(see [37], as an example of the use of “objects” from a
physical models perspective). In MPEG-7’s Multimedia
Description Scheme[6] an object is defined as “(...) a
perceivable or abstract object in a narrative world. A
perceivable object is an entity that exists, i.e. has
temporal and spatial extent, in a narrative world (e.g.
Tom’s piano). An abstract object is the result of
applying abstraction to a perceivable object (e.g. any
piano).”
In this section we intend to give a clear definition of
what is meant when talking about this idea. For doing
so, we rely on definitions given to similar concepts in
other areas. Especially we refer to the idea of Object
Oriented Programming, commonly used in the computer
programming knowledge corpus. It is interesting to
note, though, the strong relation there has traditionally
been between OO technologies and computer music or

sound signal processing [26]. As a matter of fact, the
definition we will later introduce can be seen as a
superset and conceptual enhancement of other
previously introduced concepts (see [28], for example).
Alan Kay (one of the fathers of OO when designing the
Smalltalk programming language, inventor of the
modern laptop and the window-based GUI system)
includes in his definition of OO the sentence
“everything is an object” [16]. Following this same idea,
when dealing with Object Oriented Sound Processing,
everything must be thought of as an object: a sound
stream is an object, a track is an object, a musical note is
an object, an instrument is an object…These objects
have different properties and relate between them in
different ways.
More precisely, and again following the OOP theory, an
object is made up of an identity, a state and a behavior.
The identity is the property that may be used to
distinguish two instances (or objects) that have identical
state and behavior. The state of an object is the
summing up of the values of the different attributes or
properties that an object may have. On the other hand,
the behavior is the way that a particular object responds
to a message (let’s say a given effect or analysis
algorithm, for example).
Let us see a basic example. In a sound stream we have a
number of tracks one of which contains a trumpet
performance. In this track, there may be different and
identical notes (same pitch, same loudness, same attack
type…). Thus, at first sight, we might distinguish four
different kinds of objects:
- The whole sound stream
- Our set of tracks (out of which we concentrate on

the one with the trumpet performance)
- The instrument in that track (trumpet)
- Any number of notes in the track
As a first and basic interpretation, the UML[24] object
diagram of the system is depicted in Figure 3.

MyStream

Track1

myTrumpet

Note1 Note2 Noten…

Track2 Trackn…

Figure 3: UML Object diagram of a simple audio stream

Amatriain and Herrera Transmitting Audio Content as Sound Objects

AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio 3

On the other hand, we define a class as a container of
objects that comply with an identical behavior.
Following the previous example, we could define what
the class Sound_Stream, Audio_Track, Instrument and
so on should behave like. The UML class diagram of
the previous example would be the one represented in
Figure 4.

SoundStream

AudioTrack

1

*

Instrument

Note

0..*
1..*

1
*

MonoAudioTrack StereoAudioTrack

Trumpet

1

*

Figure 4: UML simplified class diagram representing an

audio stream

which, for those not familiar with UML, should be read:
a Sound Stream is made up of any number of tracks (a
track can only belong to a single stream); an Audio
Track is related to a single instrument and an instrument
can be recorded into different tracks; an Audio Track is
also made up of any number of notes which have an
association relation with the instrument that produced
them; trumpet is a particular case of an instrument
(behaves like an instrument but may add specific
behaviour) and Mono Audio Track and Stereo Audio
Track are particular cases of Audio Tracks.
When declaring a class, we must ask ourselves what
should be the behavior of a given class declaring
methods for that purpose. The class SoundStream, for
example, might have methods such as
AddAudioTrack(), FindInstrument()… We should
therefore identify the attributes that will be used to
distinguish the state of two objects belonging to a same
class. In that sense, for example, we should identify the
attributes that may allow us to distinguish two different
instruments (trumpet and piano). We may end up having
a diagram similar to the one depicted in Figure 5.

+AddTrack()

-mnTracks
-mType
-mStartTime
-mEndTime

SoundStream

+GetTrackType()

AudioTrack

1

*

+GetInstrumentType()

-mSpectralCentroid
-mLogAttackTime
-mSpectralDeviation
-mSpectralSpread
-mSpectralVariation

Instrument

+GetPrevious()
+GetNext()

-mStartTime
-mEndTime
-mAttackType
-mPitch
-mLoudness

Note

0..*

1..*

1

*

MonoAudioTrack
-mLeftChannel
-mRightChannel

StereoAudioTrack

-mTrumpetType
Trumpet

1

*

Figure 5: Complete UML class diagram

The previous diagram, though, does not explicitly show
our first hypothesis of everything being an object. For
doing so, the only missing link we should add is the fact
that every class in our model should be a subclass of the
SoundObject superclass. The diagram would then
become (previously introduced methods and attributes
are not shown for simplicity) the one depicted in the
following figure:

SoundStream

AudioTrack

1

*

Instrument

Note

0..*
1..*

1

*

MonoAudioTrack StereoAudioTrack

Trumpet

1

*

SoundObject

Figure 6: The “everything is a sound object” class

diagram

Amatriain and Herrera Transmitting Audio Content as Sound Objects

AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio 4

Note that from now on, we will treat every bit of audio
content as an object on its own. For that reason, the
word ‘content’ is sometimes used as a synonym for
‘object’, ‘content description’ becoming then ‘object
description’, for example.

2 THE ANALYSIS STEP: CONTENT
EXTRACTION AND OBJECT
IDENTIFICATION

The easiest way to add content description to an
audiovisual chunk of information is by means of textual
or oral annotation. The extraction process is in that case
performed by an ‘expert’ that can interpret the content,
extract some useful information and classify each sound
object, provided there is an appropriate taxonomy
available.
When thinking in terms of automatic content-
extraction[31], two levels of descriptors are usually
distinguished: low-level and high-level content
descriptors. As a first approach, and in the broad sense,
low-level descriptors are those related to the signal itself
and have little or no meaning to the end-user. In other
words, and thinking in terms of our domain, these
descriptors cannot be ‘heard’. On the other hand, high-
level descriptors are meaningful and might be related to
semantic or syntactic features of the sound. These latter
will be the ones that will be used to classify sound
objects into the class they belong.
It is obvious that the borderline between these
categories is thin and not always clear. Some descriptors
can be viewed as either low or high-level (or as either
syntactic or semantic) depending on the characteristics
of the extraction process or the targeted use. Although
these categories will be used throughout this paper, we
might better think in terms of a multilevel analysis
scheme as the one depicted in Figure 7.

Analysis
Level 0

Analysis
Level 1

...

Analysis
Level n

OO
Content

Encoding

Multilevel
Objects

Descriptions

Lower-level analysis
(signal processing
related)

Higher-level analysis
(related to semantic
content)

Input
Signal

Figure 7: Multilevel analysis step

2.1 Low-level content descriptors
As mentioned before, low level descriptors are closely
related to the signal itself or any of its representations.
Any audio signal can be represented as a time-domain
signal or as its spectral transform, and following this
same idea a first (and yet incomplete) categorization,
separates low-level descriptors into two categories:
temporal and spectral descriptors.
Temporal descriptors can be immediately computed
from the actual signal or may require a previous
adaptation stage in order to extract the amplitude or
energy envelope of the signal, thus only taking into
account the overall behaviour of the signal and not its
short-time variations. Examples of temporal descriptors
are attack time, temporal centroid, zero-crossing rate,
etc...
Many other useful descriptors can be extracted from the
spectrum of an audio signal. These descriptors can be
mapped to higher level attributes. As a matter of fact, of
the basic dimensions of a sound, two of them (pitch and
brightness) are more easily mapped to frequency
domain descriptors and a third one (timbre) is also very
closely related to the spectral characteristics of a sound.
A previous analysis step needs to be accomplished in
order to extract the main spectral features. For
inharmonic sounds a Fourier analysis (FFT or STFT)
can be enough, but a further step (which may include
fundamental extraction, peak tracking and some sort of
separation of the sinusoidal and residual component of
the signal) is useful for the analysis of harmonic
features [33]. Descriptors directly derived from the
spectrum are, for example: spectral envelope, power
spectrum, spectral amplitude, spectral centroid, spectral
tilt, spectral irregularity, spectral shape, spectral
spread…; derived from the spectral peaks: number of
peaks, peak frequencies, peak magnitudes, peak phases,
sinusoidality…; derived from a fundamental detection:
fundamental frequency, harmonic deviation; etc...[34]

2.2 High-level content descriptors
While descriptors presented in the previous section are
purely morphologic (that is, they do not carry any
information on the actual meaning of the source and just
refer to its inner structural elements), high-level
descriptors can carry either semantic or syntactic
meaning.
Syntactic high-level descriptors can be sometimes
computed as a combination of low level descriptors.
They usually refer to features that can be understood by
an end-user without previous signal processing
knowledge but do not carry semantic meaning. In other
words, syntactic descriptors cannot be used to label a
piece of sound according to what actually ‘is’ but rather
to describe how it is distributed or what is made of (i.e.
its structure). Thus, syntactic descriptors can be seen as
attributes of our sound classes but, by themselves,

Amatriain and Herrera Transmitting Audio Content as Sound Objects

AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio 5

cannot be used to identify objects and classify them. For
that reason, the computation of syntactic descriptors
(either low or high-leveled) is not dependent on any
kind of musical knowledge, symbolic or “real-world”
knowledge. In [25], for example, we presented a way of
describing timbre of isolated monophonic instrument
notes (the scheme for computing the descriptors of a
harmonic timbre is depicted in Figure 9). In the case of
our timbre descriptor, for example, the resulting
descriptor is not sufficient to label a note as being
‘violin’ or ‘piano’ but rather to compute relative
perceptual distances between different instrument
samples.

Signal

Temporal
Envelope

Computation

STFT Harmonic
Detection

Z-1f0Sliding Analysis
Window

Log Attack
Time

Temporal
Centroid

Spectral
Centroid
Spectral
Deviation
Spectral
Spread
Spectral
Variation

Figure 8: Combining low-level descriptors for creating
higher-level syntactic descriptors: MPEG-7’s Timbre

Descriptor

When trying to label a chunk of audio with a semantic
descriptor we are implicitly performing a classification
activity and thus identifying sound objects. We
therefore need to apply more high-level or real world
knowledge. The degree of abstraction of a semantic
descriptor though has a wide range, labels such as
‘scary’ or more concrete such as ‘violin sound’ can be
considered semantic descriptors.
The main purpose of a semantic descriptor is to label the
piece of sound to which it refers using a commonly
accepted concept or term that corresponds to a given
“sound class” (e.g. instrument, string instrument,
violin...). It is interesting to note that, in this case, the
classification process is performed in a top-down
manner. Using low-level or high-level syntactic
descriptors we might be more or less immediately be
able to identify our piece of sound in as belonging to a
quite abstract class (in the worst case we are always able
to classify it as a Sound Object). Applying both real-
world knowledge and signal processing knowledge we
may be able to get our problem to a more concrete
ground and start down-casting our description to
something like “string instrument” or “violin” (see
Figure 9).

Analysis
Step1

Analysis
Step2

Analysis
Step3

SoundObject

Instrument

SoundObject Instrument

SoundObject

StringInstrument

Instrument

SoundObject

StringInstrument

Violin

Figure 9: Multilevel semantic analysis/classification and

polymorphic objects

Other semantic descriptors, though, do not aim at
classifying the sound but rather at describing some
important feature or attribute. These descriptors can
classify a sound as ‘loud’, ‘bright’ ‘scary’... In this case,
conversely to what happened with the previous
classifiers, the more concrete a feature is the easier it
will be to derive it from our previously computed low-
level or high-level syntactic descriptors. For example, a
label like “bright” might be directly derived from the
“spectral centroid” low-level descriptor. Much more
real-world knowledge must be applied to be able to
classify a sound as “sad” or “frightening” (see Figure
10).

Amatriain and Herrera Transmitting Audio Content as Sound Objects

AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio 6

Analysis
Step1

Analysis
Step2

Analysis
Step3

-LLD1 = xx
-LLD2 = xx
-LLD3 = xx
-LLD4 = xx

SoundObject

-LLD1 = xx
-LLD2 = xx
-LLD3 = xx
-LLD4 = xx
-Bright = 90%

SoundObject -LLD1 = xx
-LLD2 = xx
-LLD3 = xx
-LLD4 = xx
-Bright = 90%
-Shiny = 85%

SoundObject

-LLD1 = xx
-LLD2 = xx
-LLD3 = xx
-LLD4 = xx
-Bright = 90%
-Shiny = 85%
-Funny = 60%
-Frightening = 20%

SoundObject

Figure 10: Multilevel semantic analysis for adding

higher-level abstract features

Different proposals have been made in order to create a
semantic map or multi-level structure for describing an
audio scene, ones of them being the ten-level map
presented in the MPEG Geneva meeting (May,
2000)[15]. This proposal includes four syntactic levels
and six semantic levels: Type/Technique, Global
Distribution, Local Structure, Global Composition,
Generic Objects, Generic Scene, Specific Objects,
Specific Scene, Abstract Objects, and Abstract Scene.
(Note: the word ‘object’ is used here as a synonym of
‘source’ and should not be understood in the sense of
the definition given in this paper).
While that proposal is quite theoretical and simple, and
comes from a generalization of a similar structure
proposed for video description, other proposals come
from years of studies on the specific characteristics of
an audio scene and have even had practical applications.
One of the most renowned techniques that can fit into
this category is CASA (Computer Auditory Scene
Analysis)[7]. It is far beyond the scope of this paper to
go deep into any of these proposals, but it is interesting
to note that CASA has addressed the issue of describing
complex sound mixtures that include music, speech and
sound effects, also providing techniques for separating
these different kinds of streams into sound objects (see
[23], for example).

3 THE CODING STEP (CONTENT
DESCRIPTION)

In the coding step, all the content information extracted
in previous steps needs to be encoded in an appropriate
format. Binary and textual based versions of the format

should be provided in order to provide both coding and
transmission efficiency and readability. It is also
important for the coding scheme used to offer support to
the way that the output of our analysis block is
organized. In that sense, it is necessary to use a highly
structured language that enables the description of a
tree-like data structure giving also support to object
oriented concepts.
Maybe the first idea that comes to mind is using UML
as a way of describing our content. UML is indeed a
highly structured language and supports all OO
concepts. It would be an excellent choice for describing
our Sound Classes. But it is not so appropriate if what
we want is to describe the state of our objects/instances
or, in other words, make our objects persistent. The
UML Object Diagram (see Figure 3) does not seem a
good choice for doing so.
But there are many examples of coding schemes used
for encoding metadata or, more precisely, audiovisual
content description, perhaps the most ambitious being
MPEG7. Although MPEG7 is focused on search and
retrieval issues, the actual encoding of the audiovisual
content description is flexible enough as for being used
by a system as the one proposed in this article[13][18].
It is based in an extension of W3’s XML-Schema called
MPEG7’s DDL (Descriptor Definition Language).
XML-Schema is a definition language for describing the
structure of an XML document using the same XML
syntax and it is supposedly bound to replace the existing
DTD language. It is thus a tagged textual format but it
also includes support for most Object Oriented concepts
[38]. Note so, that XML-Schema will be the language
used for structuring our content or defining Sound
Classes, but the actual output of the analysis or content
of the identified objects will be a standard XML
document. See [9] for a thorough example of how
MPEG-7’s DDL may be used to serve our purposes,
defining in this case a multilevel content hierarchy for
sound effects. Furthermore, and as introduced in [14], a
mapping can also be accomplished between UML-
described classes and XML output.
On the other hand, the encoding step must also be in
charge of deciding the degree of abstraction to be
applied to the output of the content extraction step. This
decision must be taken on the basis of the application
and the user's requirements although it will obviously
affect the data transmission rate. The encoder must
decide what level of the content tree should indeed be
encoded depending on the degree of concreteness
demanded to the transmission process, degree that will
usually be fixed by the particularities of the receiver. If
only high-level semantic information is encoded, the
receiver will be forced to use more of its 'artificial
imagination' (see next section). The more low-leveled
the information encoded is, the more 'real world
knowledge' the receiver should have.

Amatriain and Herrera Transmitting Audio Content as Sound Objects

AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio 7

Another subject, which will not be dealt with in this
paper, is how this textual information could be
compressed and transformed into a more efficient
binary format suitable for transmission.

4 THE DECODING STEP: CONTENT
INTERPRETATION

The main task of the decoder is to interpret the
information received through the channel in order to be
able to feed the Synthesizer with the correct parameters.
Encoded sound objects must be interpreted and prepared
for the next module’s requirements. Two main
processes are expected from the decoder depending if
the content description received is high or low level. We
will now detail their main characteristics.
If the decoder is input low-leveled descriptions, there
are two options, depending on the application
requirements. The low level descriptors can be directly
fed into the Synthesis engine or there can be an
intermediate 'abstraction process' (see Figure 11). In the
abstraction process, the decoder has to use 'real world'
knowledge in order to convert low-level information
into mid-level information, more understandable from
the synthesizer point of view. If the abstraction process
is omitted and the synthesizer receives low-level
information but this description is not exhaustive, those
parameters not specified should be taken as default.
Thus, paradoxically, the synthesizer is granted some
degrees of freedom and the result may loose concretion.
An example of this situation would be an input like
‘sound object, centroid=120Hz”. It is obvious that many
sound objects comply with this low-level description,
the decoder would be in charge of adjusting other
necessary parameters.

Decoding Synthesis

Abstraction
Process

Low-level
 Input

Output
Sound

Low-level
 Parameters

Mid-level
 Parameters

Figure 11: Low-level input to the Decoder: Abstraction

Process

If the input to the decoder consists only of high-level
semantic information, an intermediate ‘inference’
process is always needed in order to make the content
description understandable by the synthesis engine (see
Figure 12). This process, contrary of the 'abstraction
process' earlier mentioned, might be better understood
by using an example. Imagine the decoder's input is
'violin.note'. The synthesizer will be unable to interpret

that content description because of its degree of
abstraction. The decoder is thus forced to lower the
level of abstraction by suppressing degrees of freedom.
The output of the decoder should be something like
'violin note, pitch: C4, loudness: mf…'.
Both abstraction and inference are indeed one-to-many
process, that is, the same input should yield a finite set
of different outputs. The way the decoding process gets
rid of the degrees of freedom should rely on user or
application preferences as well as on random processes
or context awareness. In the previous example, the
decision on the note and loudness to be played could be
based on knowledge on the author, the style, the user’s
likes, previous or future notes, harmony and a final
random process to choose one of the best alternatives.

Decoding Synthesis

Inference
Process

High-level
 Input

Output
Sound

Mid-level
 Parameters

Figure 12: High-level input to the Decoder: Inference

Process

5 SYNTHESIS STEP
The key point of the language used for expressing
synthesis parameters is that it must not only meet the
requirements of the synthesizer's input but also the
needs of the decoder's output.
Many languages have been developed for the purpose of
controlling a synthesizer [1][20][32]. Among them, the
most extended one is MIDI [21][22] although its
limitations make it clearly not sufficient for the system
proposed in this paper. Another synthesis language that
deserves consideration at this point is MPEG4's SAOL
(Structured Audio Orchestra Language)[30] [36].
SAOL has been mostly developed at the MIT and has
been recently standardized by MPEG and included in
MPEG4. SAOL is indeed an evolution of the well
known CSound synthesis language and also includes
support for some OO concepts. The main advantage of
using SAOL at this point of the process is that it should
be possibly linked into the parameters coming out from
the analysis step, provided that MPEG7 was used at the
encoding process.

6 A COMBINED RECEIVER SCHEME:
CONTENT-BASED SYNTHESIS

Although sometimes it may be useful to conceptually
separate the receiver into a decoder and a synthesizer,

Amatriain and Herrera Transmitting Audio Content as Sound Objects

AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio 8

many other times, a combined scheme that treats the
receiver as a whole will be more feasible.
In that case, the resulting receiver scheme is what we
call a “Content-based Synthesizer”, or “Object-based
Synthesizer” which, at first sight, does not defer much
from that of a “traditional” synthesizer (see Figure 13).

Metadata

Sound

High to
low-level
mapping

“Traditional”
synthesizer

Figure 13: Combined scheme for modeling the receiver

of a content transmission system

In a general situation, a simple mapping strategy may be
sufficient. But if the level of abstraction of the input
metadata is higher, the gap between the information
transmitted and the parameters that are to be fed to the
synthesis engine might be impossible to fill using
conventional techniques. Imagine for example a
situation where the transmitted metadata included a
content description such as: [genre: jazz, mood: sad,
user_profile: musician].
The latter example leads to the fact that we are facing a
problem of search and retrieval more than one of
finding an appropriate mapping strategy. We could have
a database made up of sound files with an attached
content description in the form of metadata. The goal of
the system is then to find what object in the database
fulfils the requirements of the input metadata (see
Figure 14).

Control
Parameters in the
form of Metadata

SoundData
base

Sound +
Metadata

Search
Engine

Pre-analyzed
sounds

Figure 14: Search and retrieval as a means of

synthesizing

A problem we still have to face with such a model is the
difficulty to automatically extract parameters with such
a level of abstraction from the signal itself. We can find
examples of existing applications that implement the
system depicted in the previous figure but they always

need a previous step of manually annotating the content
of the whole database.
A possible solution to this “inconvenience” is the use of
machine learning techniques. It is recently becoming
usual, in this sort of frameworks, to implement, for
example, collaborative filtering engines (classification
based on the analysis of users’ preferences: “if most of
our users classify item X as being Y, we label it that
way”). In that case though, the classification and
identification is performed without taking into account
any inner property of the sounds. On the other hand, if
what we intend to have is a system capable of learning
from the sound features, we may favor a Case-Based
Reasoning (CBR) engine as the one used in [5].

7 THE CLAM FRAMEWORK
Bearing all previous considerations in mind, and using
an approach derived from the different models
previously introduced, the CLAM framework is being
developed in our team. CLAM stands for C++ Library
for Audio and Music and means “a continuous and loud
sound produced by people as approval or disagreement
with a given event” in Catalan.
The CLAM framework has two operating modes:
unsupervised and supervised. In the former, it may be
used as a regular open-source/cross-platform C++
library. In the second mode (still in development) a box-
and-arrows approach is used in order to build fast
prototypes for general music and audio processing.
CLAM includes utilities such as cross-platform Audio
and MIDI stream I/O, file I/O and a number of
processing algorithms both in the time and frequency
domain, all of it cross-platform and tested completely
under Linux and Windows and partially under MacOS.
At this moment, more than 250 C++ classes have been
implemented, resulting into about 50,000 lines of code.
Different kind of objects are distinguished in the
framework but the most widely spread categories are the
Processing and the Processing Data objects. Processing
classes embed any process that can be actually
accomplished in the framework. This processing is
performed as response to a call to a compulsory Do()
method. The input/output of data to the processing
objects is done manually (as arguments of the Do()
method) or using an interface of Ports in the non-
supervised mode. In any case, the input/output to a
Processing object must always be a Processing Data
object. Apart from Ports, Processing objects also own
control and configuration objects (see Figure 15).

Amatriain and Herrera Transmitting Audio Content as Sound Objects

AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio 9

Figure 15: Model of a Processing object in the CLAM

framework

Processing Data classes embed all kind of data that can
be processed in the system. They include classes for
holding audio, spectrum, spectral peaks, segments,
frames, descriptors... Processing Data classes are
implemented using a macro-derived system generically
called Dynamic Types that enable run-time instantiation
of attributes and ensure a homogeneous interface for all
Processing Data objects.
Both Processing and Processing Data can be made
persistent (stored to disk) or loaded on run-time and in
any part of the thread. For doing so, XML has been
chosen as a general-purpose structured language
although the architecture allows easy extension to other
formats such as SDIF. The structure of the XML
document correspond to the actual structure of the
object in memory[14].
Although the framework is far from finished it has
already been used in a number of internal research
projects with applications as distant as near lossless
time-stretching, high quality saxophone synthesis,
MPEG7 compliant description analysis toolkit, real-time
processing for electro-acoustical performance and SMS
analysis/synthesis toolkit. CLAM will be released as
open-source as part of the AGNULA IST European
project.

8 CONCLUSIONS
As detailed in the different sections, the model proposed
is based on a new paradigm: the transmission of content
as sound objects. The model must be understood as a
working framework rather than as a system that should
be due in the short term. Even so, the necessary
technologies to implement the different modules are
already available or are expected to be in a short term as
interest in content-processing grows among different
research teams.
One may question the benefits of content-based audio
applications. By concentrating on the transmission of
content description we are actually favoring the

distinction between content and its realization. And, by
doing so we favor a higher level approach,
encapsulation, concept reuse, the upcoming of new
applications (i.e. content-based transformations), data
reduction, and robustness enhancement, to name a few.

9 ACKNOWLEDGEMENTS
The work reported in this paper has been partially
funded by the IST European project CUIDADO and by
the TIC national project TABASCO.

REFERENCES
[1] Amatriain, Xavier; Bonada, Jordi; Serra, Xavier.

"METRIX: A Musical Description Language and
Class Structure for a Spectral Modeling Based
Synthesizer" in Proceeding of the Digital Audio
Effects Workshop (DAFX98). Barcelona, Spain,
1998.

[2] Amatriain, Xavier; Herrera, Perfecto. “Audio
Content Transmission”, in Proceeding for the
2001 DAFX Conference. Limerick, Ireland,
December 2001.

[3] Amatriain, X; Bonada, J.; Loscos, A.; Serra, X..;
“Spectral Processing” in DAFX. Digital Audio
Effects. John Wiley and Sons, Ltd. (In Press).
2002.

[4] Amatriain, X; Bonada, J.; Loscos, A.; Arcos, J.
L., Verfaille, V. “Addressing the Content Level
in Audio and Music Transformations”, in Journal
of New Music Research, 2002. (In Preparation)

[5] Arcos, J. L.; R. López de Mántaras; X. Serra.
1998. "Saxex: a Case-Based Reasoning System
for Generating Expressive Musical
Performances", Journal of New Music Research,
Vol. 27, N. 3, Sept. 1998.

[6] van Beek, P.; Benitez, A..; Heuer, J.; Martinez,
J.; Salembier, P.; Shibata, Y.; Smith, J.R. ;
Walker, T. “Text of 15938-5 FCD Information
Technology – Multimedia Content Description
Interface – Part 5 Multimedia Description
Schemes”, Singapore. 2001.

[7] Bregman, A. S. Auditory Scene Analysis: the
Perceptual Organization of Sound, MIT Press,
Cambridge, MA, 1990

[8] Camurri, Antonio; “Music Content Processing
And Multimedia: Case Studies and Emerging
Applications of Intelligent Interactive Systems”,
Journal of New Music Research, Vol.28 No.4,
1999.

Amatriain and Herrera Transmitting Audio Content as Sound Objects

AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio 10

[9] Casey, Michael; “MPEG-7 Sound-Recognition
Tools” in IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 11 (6).
June, 2001

[10] Chiariglione, Leonardo; “The Value of Content”,
Technology Reviews, March 2000.

[11] Chion, Michel; Guide des Objets Sonores. Pierre
Schaeffer et la Reserche Musicale. INA-
GRM/BUCHET.CHASTEL. 1983

[12] Darnell, Donald; Approaches to Human
Communication, Richar Budd and Brent Ruben
eds, Spartan Books, New York, 1972

[13] Ebrahimi, Touradj and Christopoulos, Charilaos;
“Can MPEG-7 be used beyond database
application?”, input document for the Atlantic
City Meeting of MPEG, October 1998. Doc.
num. M3861

[14] Garcia, David; Amatriain, Xavier. “XML as a
means of control for audio processing, synthesis
and analysis.” in Proceedings of the MOSART
Workshop on Current Research Directions in
Computer Music. Barcelona, Spain, 2001.

[15] Jaimes, Alejandro; Benitez, Ana B.; and Chang,
Shih-Fu; “Multiple Level Classification of
Descriptions for Audio Content”, input document
for the Geneva Meeting of MPEG, May 2000.
Doc. num. M6114

[16] Kay, Alan. “The Early History of Smalltalk” in
Proceedings of the Second ACM SIGPLAN
History of Programming Languages Conference.
ACM SIGPLAN Notices 28(3): 69-75. 1993

[17] Karjalainen, M. “Immersion and content- a
framework for audio research”, in Proceedings
of the IEEE Workshop of Applications of Signal
Processing to Audio and Acoustics, 1999.

[18] Lindsay, Adam and Kriechbaum, Werner;
“There’s More Than One Way to Hear It:
Multiple Representations of Music in MPEG-7”,
Journal of New Music Research, Vol.28 No.4,
1999.

[19] Martínez, Jose M., “Overview of the MPEG-7
Standard”, document number: ISO/IEC
JTC1/SC29/WG11 N4031
http://www.cselt.it/mpeg/standards/mpeg-7/mpeg-7.htm

[20] Mc Millen, Keith. 1994. "ZIPI: Origins and

Motivations". Computer Music Journal 18(4). pp
48-96

[21] MIDI Manufacturers Association. MIDI 1.0
Detailed Specification. Los Angeles: The
International MIDI Association. 1998

[22] Miles Huber, David.1991. The MIDI manual.
USA. Howard W.Sams.

[23] Nakatani, Tohomiro and Okuno, Hiroshi G.;
“Sound Ontology for Computational Auditory
Scene Analysis”, in proceeding for the 1998
conference of the American Association for
Artificial Intelligence.

[24] OMG (Object Management Group); OMG
Unified Modeling Language Specification.
Version 1.4. September 2001.

[25] Peeters, Geoffroy; Herrera, Perfecto; Amatriain,
Xavier. “Audio CE for Instrument Description
(Timbre Similarity)”, Input document for the
Maui Meeting of MPEG, November 1999. Doc.
num. m5422

[26] Pope, Stephen Travis (editor). The well-tempered
object, Musical Applications of Object-Oriented
Technology. MIT Press. 1991.

[27] Rolland, P.; Pachet F. 1995. “Modeling and
Applying the Knowledge of Synthesizer Patch
Programmers” in G. Widmer (ed.), Proceedings
of the IJCAI-95 International Workshop on
Artificial Intelligence and Music, 14th
International Joint Conference on Artificial
Intelligence (IJCAI-95), Montreal, Canada.

[28] Scaletti, C. and Hebel, K. “An Object-based
Representation for Digital Audio Signals”, in
Representations of Musical Signals. MIT Press.
1991.

[29] Schaeffer, Pierre; Traité des Objets Musicaux.
Editions Du Seuil. 1966.

[30] Scheirer, Eric D.; “SAOL: The MPEG-4
Structured Audio Orchestra Language”,
Proceeding for the 1998 ICM.

[31] Scheirer, Eric D.; “Music Listening Systems”,
Phd Thesis for the MIT, June 2000

[32] Selfridge-Field, Eleanor.1997. Beyond Midi, The
Handbook of Musical Codes. MIT Press.

Amatriain and Herrera Transmitting Audio Content as Sound Objects

AES 22nd International Conference on Virtual, Synthetic and Entertainment Audio 11

[33] Serra, X. 1996. “Musical Sound Modeling with
Sinusoids plus Noise”, in G. D. Poli, A. Picialli,
S. T. Pope, and C. Roads, editors, Musical Signal
Processing. Swets & Zeitlinger Publishers.

[34] Serra,X. and Bonada,J. “Sound Transformations
Based on the SMS High Level Attributes”.
Proceedings of the Digital Audio Effects
Workshop (DAFX98), Barcelona, November
1998.

[35] Shannon, Claude and Weaver, Warren; The
Mathematical Theory of Communication, Univ.
of Illinois, Urbana, 1949

[36] Synthetic/Natural Hybrid Coding (SNHC)
section of the MPEG-4. “Final Committee Draft
Version 1.8.” Document num.FCD ISO/IEC
14496-3 Subpart 5. MIT Media Laboratory.
http://sound.media.mit.edu/mpeg4

[37] Tolonen, Tero. “Object-Based Source Modeling
for Musical Signals”, in proceedings of the 109th
AES Convention, Los Angeles, 2000.

[38] W3’s XML-Schema homepage,
[http://www.w3.org/XML/Schema]n

