Chapter 10

Spectral Processing

X. Amatriain, J. Bonada, A. Loscos, X. Serra

10.1 Introduction

In the context of this book, we are looking for representations of sound signals and
signal processing systems that can provide ways to design sound transformations in a
variety of music applications and contexts. It should have been clear throughout the
book, that several points of view have to be considered, including a mathematical,
thus objective perspective, and a cognitive, thus mainly subjective, standpoint. Both
points of view are necessary to fully understand the concept of sound effects and to
be able to use the described techniques in practical situations.

The mathematical and signal processing points of view are straightforward to
present, although not necessarily easily, since the language of the equations and of
flow diagrams is suitable for them. However, the top-down implications are much
harder to express due to the huge number of variables involved and to the inherent
perceptual subjectivity of the music making process. This is clearly one of the main
challenges of the book and the main reason for its existence.

The use of a spectral representation of a sound yields a perspective that is
sometimes closer to the one used in a sound engineering approach. By understanding
the basic concepts of frequency domain analysis, we are able to acquire the tools
to use a large number of effects processors and to understand many types of sound
transformation systems. Moreover, being the frequency domain analysis a somewhat
similar process to the one performed by the human hearing system, it yields fairly
intuitive intermediate representations.

The basic idea of spectral processing is that we can analyze a sound to obtain
alternative frequency domain representations, which can then be transformed and
inverted to produce new sounds (see Fig.10.1). Most of the approaches start by
developing an analysis/synthesis system from which the input sound is reconstructed

373

374 10 Spectral Processing

without any perceptual loss of sound quality. The techniques described in chapters
8 and 9 are clear examples of this approach. Then the main issue is what is the
intermediate representation and what parameters are available for applying the
desired transformations.

Original Fourier . Spectral Transformed
O——> f . 0
Sound Analysis : Transformations : Synthesis Sound
1 1
1 1
1 | | 1
A\ A\
os os
. Original Transformed .
Spectrum Spectrum
o5 os
{
0 0 ;
o i 20 W %o w0 » » o w0 0 we w0 5o
Time w0 0 Time
© %
w w0
100 100
20 120
0 40
o 2000_ 4000 6000 8000 10000 0 2w 00 600 300 10000
Frequency Frequency

Figure 10.1 Block diagram of a simple spectral processing framework.

Perceptual or musical concepts such as timbre or pitch are clearly related to the
spectral characteristics of a sound. Even some very common processes for sound
effects are better explained using a frequency domain representation. We usually
think on the frequency axis when we talk about equalizing, filtering, pitch shifting,
harmonizing ... In fact, some of them are specific to this signal processing approach
and do not have an immediate counterpart on the time domain. On the other hand,
most (but not all) of the sound effects presented in this book can be implemented
in the frequency domain.

Another issue is whether or not this approach is the most efficient, or practical,
for a given application. The process of transforming a time domain signal into a fre-
quency domain representation is, by itself, not an immediate step. Some parameters
are difficult to adjust and force us to take several compromises. Some settings, such
as the size of the analysis window, have little or nothing to do with the high-level
approach we intend to favor, and require the user to have a basic signal processing
understanding.

In that sense, when we talk about higher level spectral processing we are thinking
of an intermediate analysis step in which relevant features are extracted or computed
from the spectrum. These relevant features should be much closer to a musical or
high-level approach. We can then process the features themselves or even apply
transformations that keep the features unchanged. For example, we can extract the
fundamental frequency and the spectral shape from a sound and then modify the
fundamental frequency without affecting the shape of the spectrum.

Assuming the fact that there is no single representation and processing system
optimal for everything, our approach will be to present a set of complementary
spectral models that can be combined to be used for the largest possible set of
sounds and musical applications.

In section 10.2 we introduce two spectral models: Sinusoidal and Sinusoidal plus
Residual. These models already represent a step up on the abstraction ladder and

10.2 Spectral Models 375

Original Spectral Feature Feature Spectral Transformed
9 —f JpeCTa L, .~ [~ Transform. —>| o [T Sp s
Sound Analysis Extraction | i | Addition ynthesis Sound
v ?
, Original Transformed ,
Feature Feature
os| 0s
0 0
e
o5 2 05
3
El i -1
o w0 a0 w0 w0 o o w0 20 %0 0 50
Time —— Time
o W0 a0 w0 40 &0 o w0 20 30 40 50
Original Time Time Transformed
Spectrum Spectrum
o
2
w
e
w0
. 100
p 120
40 L TLEININAN Ly 0
0 2000 4000 000 8000 10000 o 200 40 60 00 10000
Frequency Frequency

Figure 10.2 Block diagram of a higher-level spectral processing framework.

from either of them, we can identify and extract higher-level information of a sound,
such as: harmonics, pitch, spectral shape, vibrato, or note boundaries, that is Higher
Level Features. This analysis step brings the representation closer to our perceptual
understanding of a sound. The complexity of the analysis will depend on the type of
feature that we wish to identify and the sound to analyze. The benefits of going to
this higher level of analysis are enormous and open up a wide range of new musical
applications.

Having set the basis of the Sinusoidal plus Residual model, we will then give some
details of the techniques used both in its analysis and synthesis process, providing
Matlab code to implement an analysis-synthesis framework in section 10.3. This
Matlab implementation is based on the Spectral Modeling Synthesis framework.
SMS [SMS] is a set of spectral based techniques and related implementations for the
analysis/transformation/synthesis of an audio signal based on the scheme presented
in Fig. 10.2.

In section 10.4 we will provide a set of basic audio effects and transformations
based on the implemented Sinusoidal plus Residual analysis/synthesis. Matlab code
is provided for all of them.

We will finish with an explanation of content dependent processing implementa-
tions. In section 10.5.1 we introduce a real-time singing voice conversion application
that has been developed for use in Karaoke, and in section 10.5.2 we define the basis
of a nearly lossless time scaling algorithm. The complexity and extension of these
implementations prevent us from providing the associated Matlab code, so we leave
that task as a challenge for advanced readers.

10.2 Spectral Models

The most common approach for converting a time domain signal into its frequency
domain representation is the Short-Time Fourier Transform (STFT). It is a general

376 10 Spectral Processing

technique from which we can implement lossless analysis/synthesis systems. Many
sound transformation systems are based on direct implementations of the basic
algorithm and several examples have been presented in chapter 8.

In this chapter, we will briefly mention the Sinusoidal Model and will concen-
trate, with a Matlab sample code, on the Sinusoidal plus Residual Model. Anyhow,
the decision as to what spectral representation to use in a particular situation is not
an easy one. The boundaries are not clear and there are always compromises to take
into account, such as: (1) sound fidelity, (2) flexibility, (3) coding efficiency, and (4)
computational requirements. Ideally, we want to maximize fidelity and flexibility
while minimizing memory consumption and computational requirements. The best
choice for maximum fidelity and minimum computation time is the STFT that, any-
how, yields a rather inflexible representation and inefficient coding scheme. Thus
our interest in finding higher-level representations as the ones we present in this
section.

10.2.1 Sinusoidal Model

Using the output of the STFT, the Sinusoidal model represents a step towards a
more flexible representations while compromising both sound fidelity and computing
time. It is based on modeling the time-varying spectral characteristics of a sound
as sums of time-varying sinusoids. The input sound s(¢) is modeled by,

s(t) = Ap(t) cos[d(t)] (10.1)

where A,.(t) and 6,.(t) are the instantaneous amplitude and phase of the 7" sinusoid,
respectively [McA86, Smi87].

To obtain a sinusoidal representation from a sound, an analysis is performed in
order to estimate the instantaneous amplitudes and phases of the sinusoids. This es-
timation is generally done by first computing the STFT of the sound, as described
in chapter 8, then detecting the spectral peaks (and measuring the magnitude,
frequency and phase of each one), and finally organizing them as time-varying si-
nusoidal tracks.

It is a quite general technique that can be used in a wide range of sounds and
offers a gain in flexibility compared with the direct STFT implementation.

10.2.2 Sinusoidal plus Residual Model

The Sinusoidal plus Residual model can cover a wide “compromise space” and can
in fact be seen as the generalization of both the STFT and the Sinusoidal models.
Using this approach, we can decide what part of the spectral information is modeled
as sinusoids and what is left as STFT. With a good analysis, the Sinusoidal plus
Residual representation is very flexible while maintaining a good sound fidelity, and
the representation is quite efficient. In this approach, the Sinusoidal representation is

10.2 Spectral Models 377

used to model only the stable partials of a sound. The residual, or its approximation,
models what is left, which should ideally be a stochastic component. This model is
less general than either the STFT or the Sinusoidal representations but it results
in an enormous gain in flexibility [Ser89, Ser90, Ser96].

The input sound s(t) is modeled by,

R

s(t) = Ap(t) cos[f(t)] + e(t) (10.2)

r=1

where A,.(t) and 6,.(t) are the instantaneous amplitude and phase of the 7" sinusoid,
respectively, and e(t) is the noise component at time ¢ (in seconds).

The sinusoidal plus residual model assumes that the sinusoids are stable partials
of the sound with a slowly changing amplitude and frequency. With this restriction,
we are able to add major constraints to the detection of sinusoids in the spectrum
and omit the detection of the phase of each peak. The instantaneous phase that
appears in the equation is taken to be the integral of the instantaneous frequency
wr(t), and therefore satisfies

0, (t) = /0 won(7)dr (10.3)

where w(t) is the frequency in radians, and r is the sinusoid number. When the
sinusoids are used to model only the stable partials of the sound, we refer to this
part of the sound as the deterministic component.

Within this model we can either leave the residual signal, e(t), to be the difference
between the original sound and the sinusoidal component, resulting into an identity
system, or we can assume that e(t) is a stochastic signal. In this case, the residual
can be described as filtered white noise,

eft) = /0 h(t, P)u(r)dr (10.4)

where u(t) is white noise and h(t,7) is the response of a time varying filter to an
impulse at time t. That is, the residual is modeled by the time-domain convolution
of white noise with a time-varying frequency-shaping filter.

The implementation of the analysis for the Sinusoidal plus Residual Model is
more complex than the one for the Sinusoidal Model. Figure 10.3 shows a simplified
block diagram of this analysis.

The first few steps are the same as those in a sinusoidal-only analysis. The major
differences start on the peak continuation process since in order to have a good
partial-residual decomposition we have to refine this peak-continuation process in
such a way as to be able to identify the stable partials of the sound. Several strategies
can be used to accomplish this. The simplest case is when the sound is monophonic
and pseudo-harmonic. By using the fundamental frequency information in the peak
continuation algorithm, we can easily identify the harmonic partials.

378 10 Spectral Processing

window .
generation pitch
) magnitude frequency
smoothing spectrum
window sine frequency
(X) peak pitch peak . .
sound & FFT detection estimation continuation s!"e magnitudes
phase peak peak sine phases
spectrum data data 1
additive
synthesis
— sinusoidal
0 component
smoothing residual
window | window component
generation >
amplitude
correction
FFT
magnitude phase

spectrum l lspectrum

Residual residual
modeling spectral data

Figure 10.3 Block diagram of the Sinusoidal plus residual analysis.

The residual component is obtained by first generating the sinusoidal compo-
nent with additive synthesis, and then subtracting it from the original waveform.
This is possible because the instantaneous phases of the original sound are matched
and therefore the shape of the time domain waveform preserved. A spectral analysis
of this time domain residual is done by first windowing it, using a window which
is independent of the one used to find sinusoids, and thus we are free to choose
a different time-frequency compromise. An amplitude correction step can improve
the time smearing produced in the sinusoidal subtraction. Then the FFT is com-
puted and the resulting spectrum can be modeled using several existing techniques.
The spectral phases might be discarded if the residual can be approximated as a
stochastic signal. Figure 10.4 shows a spectrogram illustrating the sinusoidal and
residual components.

The original sinusoidal plus residual model has led to other different spectral
models that still share some of its basic principles [Din97, Fit00, Ver00].

10.3 Techniques

It is beyond the scope of this chapter to discuss deeply the whole analysis-synthesis
process that results in a Sinusoidal plus Residual representation of the sound, but
lets describe in some detail the major steps.

10.8 Techniques 379

Figure 10.4 Spectrogram: a) sinusoidal component, b) residual spectrum.

10.3.1 Analysis

The analysis step of the Sinusoidal plus Residual model was already presented in
the previous section and it is illustrated in Fig. 10.3. Next we will introduce the
most important techniques and the basic considerations that need be taken into
account when analyzing a sound.

Previous considerations: STFT settings

In this section, we will see that the STFT process is far from being unsupervised,
and its settings are indeed critical in order to get a good representation of the sound.
The main parameters involved in this step are window size, window type, frame size
and hop size.

As has already been mentioned in previous chapters, the first step involved in the
process of converting a time domain signal into its frequency domain representation,
is the windowing of the sound. This operation involves selecting a number of samples
from the sound signal and multiplying their value by a windowing function [Har78].

The number of samples taken in every processing step is defined by the window
size. It is a crucial parameter, especially if we take into account that the number
of spectral samples that the DFT will yield at its output, corresponds to half the
number of samples of its input spread over half of the original sampling rate. We will
not go into the details of the DFT mathematics that lead to this property, but it is
very important to note that the longer the window, the more frequency resolution
we will have. On the other hand, it is straightforward to see the drawback of taking
very long windows: the loss of time resolution. This phenomenon is known as the
time vs. frequency resolution tradeoff (see Fig. 10.5). A more specific limitation of
the window size has to do with choosing windows with odd sample-length in order
to guarantee even symmetry about the origin.

380 10 Spectral Processing

good freq. resolution
bad time resolution

frequency

yl‘ bad freq. resolution
| v ar good time resolution
B W

Figure 10.5 Time vs. frequency resolution tradeoff.

frequency

The kind of window used also has a very strong effect on the qualities of the
spectral representation we will obtain. At this point we should remember that a
time domain multiplication (as the one done between the signal and the windowing
function), becomes a frequency domain convolution between the Fourier Transforms
of each of the signals (see Fig. 10.6). One may be tempted to forget about deciding
on these matters and apply no window at all, just taking n samples from the signal
and feeding them into the chosen FFT algorithm. Even in this case, though, a
rectangular window is being used, so the spectrum of the signal is being convolved
with the transform of a rectangular pulse, a sinc-like function.

: .‘sin;;va\;; 2 .O‘E)O H; - it "'|'|'l'u'”lm‘iulp\'.lll.l .r!.q|l|.ll}'|-!’l-l-'"I'!'ll':"'-' Tt

Hamming window

FFT

sine wave spectrum
Figure 10.6 Effect of applying a window in the time domain.

Two features of the transform of the window are specially relevant to whether
a particular function is useful or not: the width of the main lobe, and the main to
highest side lobe relation. The main lobe bandwidth is expressed in bins (spectral
samples) and, in conjunction with the window size, defines the ability to distinguish
two sinusoidal peaks (see Fig. 10.7). The following formula expresses the relationship
the window size M, the main lobe bandwidth B, and the sampling rate f; should
have in order to distinguish two sinusoids of frequency fj and fiy1:

fs
M > BSW+1 T (10.5)

The amplitude relationship between the main and the highest side lobe explains

10.8 Techniques 381

two sinusoids of 2.000 Hz and 2.200 Hz

i '-“’Il'"ﬂ't'l'-.l.',l ,

"-r":, L] -‘!H 1S

spectrum with a small window spectrum with a larger window

Figure 10.7 Effect of the window size in distinguishing between two sinusoids.

the amount of distortion a peak will receive from surrounding partials. It would
be ideal to have a window with an extremely narrow main lobe and a very high
main to secondary lobe relation. However, the inherent tradeoff between these two
parameters forces a compromise to be taken.

Common windows that can be used in the analysis step are Rectangular, Tri-
angular, Kaiser-Bessel, Hamming, Hanning and Blackmann-Harris. In the Matlab
code supplied in this chapter, we have chosen a Blackmann-Harris 92 dB window
for the sake of simplicity. This window has a rather wide main lobe (9 bins) but an
extremely high main-to-secondary lobe relation of 92 dB. This difference is so close
to the dynamic range of a 16-bit representation that, in that case, we need only take
into account the influence of the main lobe. The following Matlab function (M-file
10.1) implements the generation of a Blackman-Harris window.

M-file 10.1 (bh92.m)
function[bh92SINE2SINE,bh92SINE2SINEsize]=bh92SINE2SINEgeneration;
%function[bh92SINE2SINE,bh92SINE2SINEsize]=bh92SINE2SINEgeneration;

% ==> generation of the Blackman-Harris window
% output data:

h bh92SINE2SINEsize: size of the window

yA bh92SINE2SINE: (sampled) window

bhO2SINE2SINEsize = 4096;

bh92SINE2SINE = zeros(bh92SINE2SINEsize,1);

bho2N = 512;

bh92const = [.35875, .48829, .14128, .01168];

bh92Theta = —4%2*pi/bh92N;

bh92Thetalncr = 8%2*pi/bh92N/bh92SINE2SINEsize;

for i=1:bh92SINE2SINEsize

for m=0:3
bh92SINE2SINE (i)=bh92SINE2SINE(i)-bh92const (m+1)/2*. ..

(sine2sine(bh92Theta-m*2*pi/bh92N,bh92N)+. . .
sine2sine (bh92Theta+m*2*pi/bh92N,bh92N)) ;

382 10 Spectral Processing

end;
bh92Theta = bh92Theta + bh92Thetalncr;
end;
bh92SINE2SINE = bh92SINE2SINE/bh92SINE2SINE (bh92SINE2SINEsize/2+1) ;

The value of the sine2sine function (not included in the basic Matlab package) is
computed as follows:

M-file 10.2 (sine2sine.m)

function x = sine2sine(x , N)
% sine2sine function !!!

x = sin((N/2)*x) / sin(x/2);

One may think that a possible way of overcoming the time/frequency tradeoff is to
add zeros to the windowed signals in order to have a longer FFT and so increase
the frequency resolution. This process is known as zero-padding and it represents
an interpolation in the frequency domain. Thus, when we zero-pad a signal before
the DFT process, we are not adding any information to its frequency representation
(we will still not distinguish two sinusoids if Eq. (10.5) is not satisfied), but we are
indeed increasing the frequency resolution by adding intermediate interpolated bins.
This process can help in the peak detection process, as explained later.

A final step is the circular shift already described in section 8.2.2. This buffer
centering guarantees the preservation of zero-phase conditions in the analysis pro-
cess.

Once the spectrum of a frame has been computed, the window must move to the
next position in the waveform in order to take the next set of samples. The distance
between the centers of two consecutive windows is known as hop size. If the hop size
is smaller than the window size, we will be including some overlap, that is, some
samples will be used more than once in the analysis process. In general, the more
overlap, the smoother the transitions of the spectrum will be across time, but that
is a computationally expensive process. The window type and the hop size must be
chosen in such a way that the resulting envelope adds approximately to a constant,
following the equation

Ap(m) = Z w(m — nH) = constant. (10.6)

n=-—o0o
A measure of the deviation of A4, from a constant is the difference between the

maximum and minimum values for the envelope as a percentage of the maximum
value:

d. = 100 x max,, [A, (m)] — min,,[A, (m)]

10.7
max, [A,(m)] (10.7)
This measure is referred to as the amplitude deviation of the overlap factor. Vari-
ables should be chosen accordingly to keep this factor around or below one per
cent.

10.8 Techniques 383

We have seen that the STFT process that is bound to provide a suitable fre-
quency domain representation of the input signal, is a far from trivial process and
is dependent on some low-level parameters closely related to the signal processing
domain. A little theoretical knowledge is required but only practice will surely lead
to the desired results.

Peak Detection

The sinusoidal model assumes that each spectrum of the STFT representation can
be explained by a series of sinusoids. For a given frequency resolution, using enough
points in the spectrum, a sinusoid can be identified by its shape. Theoretically,
a sinusoid that is stable both in amplitude and in frequency - a partial - has a
well-defined frequency representation: the transform of the analysis window used
to compute the Fourier transform. It should be possible to take advantage of this
characteristic to distinguish partials from other frequency components. However, in
practice this is rarely the case, since most natural sounds are not perfectly periodic
and do not have nicely spaced and clearly defined peaks in the frequency domain.
There are interactions between the different components, and the shapes of the
spectral peaks cannot be detected without tolerating some mismatch. Only certain
instrumental sounds (e.g., the steady-state part of an oboe sound) are periodic
enough and sufficiently free from prominent noise components that the frequency
representation of a stable sinusoid can be recognized easily in a single spectrum (see
Fig. 10.8). A practical solution is to detect as many peaks as possible, with some
small constraints, and delay the decision of what is a “well behaved” partial, to the
next step in the analysis: the peak continuation algorithm.

A “peak” is defined as a local maximum in the magnitude spectrum, and the only
practical constraints to be made in the peak search are to have a frequency range
and a magnitude threshold. Due to the sampled nature of the spectrum returned
by the FFT, each peak is accurate only to within half a sample. A spectral sample
represents a frequency interval of f;/N Hz, where f; is the sampling rate and N
is the FFT size. Zero-padding in the time domain increases the number of spectral
samples per Hz and thus increases the accuracy of the simple peak detection (see
previous section). However, to obtain frequency accuracy on the level of 0.1 % of
the distance from the top of an ideal peak to its first zero crossing (in the case of a
Rectangular window), the zero-padding factor required is 1000.

A more efficient spectral interpolation scheme is to zero-pad such that quadratic
(or other simple) spectral interpolation, using only samples immediately surround-
ing the maximum-magnitude sample, suffices to refine the estimate to 0.1% ac-
curacy. That is the approach we have chosen and is illustrated in Fig. 10.9. The
frequency and magnitude of a peak is obtained from the magnitude spectrum ex-
pressed in dB. Then the phase value of the peak is measured by reading the value
of the unwrapped phase spectrum at the position resulting from the frequency of
the peak.

Although we cannot rely on the exact shape of the peak to decide whether it is
a partial or not, it is sometimes useful to have a measure of how close its shape is

384 10 Spectral Processing

magnitude (dB)

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
frequency (Hz) 4

2
@0
8
E -2
v-4
&
S -6
_8 1 1 1 1 1 1 1 Il Il Il
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
frequency (Hz) % 10°

Figure 10.8 Peak detection. a. Peaks in magnitude spectrum. b. Peaks in the phase
spectrum.

dB

spectral samples
Sa

«— parabola

N
o 4
oo

Figure 10.9 Parabolic interpolation in the peak detection process.

to the ideal sinusoidal peak. With this idea in mind, different techniques have been
used in order to improve the estimation of the spectral peaks parameters [Dep97].

The following Matlab code (M-file 10.3) implements the peak detection algo-
rithm, the function PickPeaks finds the local maximums of the spectrum.

M-file 10.3 (PickPeaks.m)
function [loc, val]l = PickPeaks(spectrum, nPeaks, minspace)

10.8 Techniques 385

wfunction oc, va = pickpeaks(spectrum, nPeaks, minspace
%t i [1 1] = pickpeaks(sp Peak inspace)
h

%==> peaking the nPeaks highest peaks in the given spectrum

yA from the greater to the lowest

% data:

yA loc: bin number of peaks (if loc(i)==0, no peak detected)
yA val: amplitude of the given spectrum

yA spectrum: spectrum (abs(fft(signal))

yA nPicks: number of peaks to pick

yA minspace: minimum of space between two peaks

[r, c] = size(spectrum);

rmin = min(spectrum) - 1;

% —---find a peak, zero out the data around the peak, and repeat
val = ones(nPeaks,c)*NaN;

loc = zeros(nPeaks,c);

for k=1:c %--- find all local peaks

difference = diff([rmin; spectrum(:,k); rmin]); % derivate

iloc = find(difference(l:r)>= 0 & difference(2:r+1) <= 0);
% peak locatiomns

ival = spectrum(iloc,k); % peak values

for p=1:nPeaks
[val(p,k),1] = max(ival); % find current maximum
loc(p,k) = iloc(1l); % save value and location
ind = find(abs(iloc(l)-iloc) > minspace);
% find peaks which are far away
if (isempty(ind))

break % no more local peaks to pick
end
ival = ival(ind); % shrink peak value and location array
iloc = iloc(ind);
end
end

The function interpolatedValues (M-file 10.4) computes interpolated values for
each peak.

M-file 10.4 (interpolatedValues.m)

function [iftloc, iftphase, iftval] = interpolatedValues ...
(r, phi, N, zp, ftloc, ftval)

%function [iftloc, iftphase, iftval] = interpolatedValues ...

% (r, phi, N, zp, ftloc, ftval)

h

386 10 Spectral Processing

%==> computation of the interpolated values

yA of location and magnitude (parabolic interpolation)
yA and phase (linear interpolation)

)

% data:

yA iftloc: interpolated location (bin)

yA iftval: interpolated magnitude

yA iftphase: interpolated phase

yA ftloc: peak locations (bin)

yA ftval: peak magnitudes

yA r: magnitude of the FFT

yA phi: phase of the FFT

yA N: size of the FFT

yA Zp: zero-padding multiplicative coefficient
%--- calculate interpolated peak position in bins (iftloc) ------

leftftval = r((ftloc-1) .*((ftloc-1)>0)+((ftloc-1)<=0).*1);
rightftval= r((ftloc+1) .*((ftloc+1)<N/2)+((ftloc+1)>=N/2) .x(N/2));
leftftval = 20%loglO(leftftval);
rightftval= 20*loglO(rightftval);
ftval = 20*loglO(ftval);
iftloc = ftloc + .bx(leftftval - rightftval) ./

(leftftval - 2xftval + rightftval);

%--- interpolated ftloc ———=————=———=————————

iftloc
iftloc

(iftloc>=1) .*iftloc + (iftloc<l).*1;
(iftloc>N/2+1) .x(zp/2+1) + (iftloc<=N/2+1).*xiftloc;

%--- calculate interpolated phase (iphase) ------------———-—————-
leftftphase = phi(floor(iftloc));

rightftphase= phi(floor(iftloc)+1);

intpfactor = iftloc-ftloc;

intpfactor = (intpfactor>0).*intpfactor ...
+(intpfactor<0) .x (1+intpfactor);

diffphase = unwrap2pi(rightftphase-leftftphase);

iftphase = leftftphase+intpfactor.x*diffphase;

%--- calculate interpolate amplitude (iftval) ----——--——--——————-
iftval = ftval-.25x(leftftval-rightftval).*(iftloc-ftloc);

These functions (as well as others that will be introduced later in this chapter) make
use of the unwrap2pi function given by M-file 10.5.

M-file 10.5 (unwrap2pi.m)
function argunwrap = unwrap2pi (arg)

10.8 Techniques 387

% function argunwrap = unwrap2pi (arg)

h

%==> unwrapping of the phase, in [-pi, pi]
% arg: phase to unwrap

arg = arg - floor(arg/2/pi)*2*pi;
argunwrap = arg - (arg>=pi)*2xpi;

Pitch Estimation

Although the term Pitch should ideally be used to refer only to perceptual issues,
the term Fundamental Frequency is not suitable to describe the output of techniques
that will be explained herein. For that reason we will use both terms without making
any distinction to refer to the output of these algorithms that aim to provide an
estimation of this psychoacoustical sensation that is often (but not always) explained
by the value of the fundamental frequency of a given harmonic series.

Pitch estimation is an optional step used when we know that the input sound
is monophonic and pseudo-harmonic. Given this restriction and the set of spectral
peaks of a frame, obtained as in the Sinusoidal Analysis, with magnitude and fre-
quency values for each one, there are many possible pitch estimation strategies,
none of them perfect [Hes83, Mah94, Can98]. The most obvious approach is to de-
fine the pitch as the common divisor of the harmonic series that best explains the
spectral peaks found in a given frame. For example, in the Two-Way Mismatch
procedure proposed by Maher and Beauchamp the estimated Fp is chosen as to
minimize discrepancies between measured peak frequencies and the harmonic fre-
quencies generated by trial values of Fy. For each trial Fy, mismatches between
the harmonics generated and the measured peak frequencies are averaged over a
fixed subset of the available peaks. This is a basic idea on top of which we can add
features and tune all the parameters for a given family of sounds.

Many trade-offs are involved in the implementation of a fundamental frequency
detection system and every application will require a clear design strategy. For
example, the issue of real-time performance is a requirement with strong design im-
plications. We can add context specific optimizations when knowledge of the signal
is available. Knowing, for instance, the frequency range of the Fy of a particular
sound helps both the accuracy and the computational cost. Then, there are sounds
with specific characteristics, like in a clarinet where the even partials are softer than
the odd ones. From this information, we can define a set of rules that will improve
the performance of the used estimator.

In the framework of the sinusoidal plus residual analysis system, there are strong
dependencies between the fundamental frequency detection step and many other
analysis steps. For example, choosing an appropriate window for the Fourier analysis
will facilitate detection of the fundamental and, at the same time, getting a good
fundamental frequency will assist other analysis steps, including the selection of an
appropriate window. Thus, it could be designed as a recursive process.

The following Matlab code (M-file 10.6) implements an algorithm for pitch de-
tection (note that first, different computations are accomplished in order to decide

388 10 Spectral Processing

if the region being analyzed is harmonic or not).

M-file 10.6 (pitchDetection.m)

function[pitchvalue,pitcherror,isHarm]=pitchDetection(r,N,
SR,nPeaks,iftloc,iftval)

% function[pitchvalue,pitcherror,isHarm]= ...

% pitchDetection(r,N,SR,nPeaks,iftloc,iftval)

h

%==> pitch detection function, using the Two-Way Mismatch

% algorithm (see TWM.m)

b

% data:

yA r: FFT magnitude

h N: size of the FFT

yA SR: sampling rate

yA nPeaks: number of peaks tracked

yA iftloc, iftval: location (bin) and magnitude of the peak
%--- harmonicity evaluation of the signal

highenergy = sum(r (round(5000/SR*N):N/2)); % 5000 Hz to SR/2 Hz
lowenergy = sum(r(round(50/SR*N) :round(2000/SR*N))) ;

% 50 Hz to 2000 Hz
isHarm = max(0, (highenergy/lowenergy < 0.6));

if (isHarm==1) %-— 2-way mismatch pitch estimation when harmonic
npitchpeaks = min(50,nPeaks);
[pitchvalue,pitcherror] = ...

TWM(iftloc(1:npitchpeaks),iftval(1:npitchpeaks),N,SR);

else
pitchvalue = 0;
pitcherror = 0;
end;
%--- in case of too much pitch error,
yA signal supposed to be inhamonic

isHarm = min (isHarm, (pitcherror<=1.5));

The Two-way mismatch procedure is implemented as follows:

M-file 10.7 (TWM.m)

function [pitch, pitcherror] = TWM (iloc, ival, N, SR)
%function [pitch, pitcherror] = TWM (iloc, ival, N, SR)
h

% => Two-way mismatch error pitch detection

pA using Beauchamp & Maher algorithm

T

10.8 Techniques

% data:

yA iloc: 1location (bin) of the peaks
yA ival: magnitudes of the peaks

yA N: number of peaks

yA SR: sampling rate

ifreq = (iloc-1)/N*SR; % frequency in Hertz

%--- avoid zero frequency peak
[zvalue,zindex] = min(ifreq);
if (zvalue==0)

ifreq(zindex) = 1;

ival (zindex) = -100;
end

ival2 = ival;
[MaxMag,MaxLocl] = max(ival2);

ival2(MaxLoc1) = -100;
[MaxMag2,MaxLoc2]= max(ival?2);
ival2(MaxLoc2) = -100;

[MaxMag3,MaxLoc3]= max(ival?2);

%--- pitch candidates

nCand = 10; % number of candidates

pitchc = zeros(1l,3#*nCand);

pitchc(l:nCand)=(ifreq(MaxLocl)*ones(1,nCand))./((nCand ...
+1-[1:nCand]));

389

pitchc(nCand+1:nCand*2)=(ifreq(MaxLoc2)*ones(1,nCand))./ ((nCand ...

+1-[1:nCand]));

pitchc(nCand*2+1:nCand*3)=(ifreq(MaxLoc3)*ones(1,nCand))./((nCand ...

+1-[1:nCand]));
%pitchc=100:300;
harmonic = pitchc;

%--- predicted to measured mismatch error

ErrorPM = zeros(fliplr(size(harmonic)));

MaxNPM = min(10,length(iloc));

for i=1:MaxNPM
difmatrixPM = harmonic’ * ones(size(ifreq))’;
difmatrixPM = abs(difmatrixPM ...

-ones(fliplr(size(harmonic)))*ifreq’);

[FreqDistance,peakloc] = min(difmatrixPM, [],2);
Ponddif = FreqDistance .* (harmonic’.”(-0.5));
PeakMag = ival(peakloc);
MagFactor max (0, MaxMag - PeakMag + 20);

390 10 Spectral Processing

MagFactor = max(0, 1.0 - MagFactor/75.0);
ErrorPM = ErrorPM ...
+(Ponddif+MagFactor.*(1.4*Ponddif-0.5));
harmonic = harmonic+pitchc;
end
%--- measured to predicted mismatch error

ErrorMP = zeros (fliplr(size(harmonic)));
MaxNMP = min(10,length(ifreq));

for i=1:length(pitchc)

nharm = round(ifreq(1:MaxNMP) /pitchc(i));
nharm = (nharm>=1) .*nharm + (nharm<1);
FreqDistance = abs(ifreq(1:MaxNMP) - nharm*pitchc(i));
Ponddif = FreqDistance.* (ifreq(1:MaxNMP)."(-0.5));
PeakMag = ival(1:MaxNMP);
MagFactor = max (0,MaxMag - PeakMag + 20);
MagFactor = max(0,1.0 - MagFactor/75.0);
ErrorMP(i) = sum(MagFactor.*(Ponddif ...
+MagFactor.*(1.4*xPonddif-0.5)));
end
%--- total error

Error = (ErrorPM/MaxNPM) + (0.3*ErrorMP/MaxNMP) ;
[pitcherror, pitchindex] = min(Error);

pitch = pitchc(pitchindex);

Peak Continuation

The peak detection process returns the estimated magnitude, frequency, and phase
of the prominent peaks in a given frame sorted by frequency. Once the spectral peaks
of a frame have been detected, and possibly a fundamental frequency identified, a
peak continuation algorithm can organize the peaks into time-varying trajectories.

The output of the Sinusoidal Analysis is a set of spectral peak values (frequency,
magnitude and phase) organized into frequency trajectories, where each trajectory
models a time-varying sinusoid (see Fig. 10.10). As it will be shown later, from this
information we can synthesize a sound using additive synthesis. The less restrictive
the peak detection step is, the more faithful the reconstruction of the original sound
will be after synthesis.

The sinusoidal model assumes that each of these peaks is part of a frequency
trajectory and the peak continuation algorithm is responsible for assigning each peak
to a given “track”. There are many possibilities for such a process. The original one
used by McAulay and Quatiery (see Fig. 10.11) in their sinusoidal representation
[McA86] is based on finding, for each peak, the closest one in frequency in the

10.8 Techniques 391

4000

3500 -

3000 -

2500 -

frequency
N
o
o
o
T

1500 -

1000 -

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
time (sec)

o <~

) o6
2 y

3 40 L

= /04

S

I

g 0

15

10 time (seconds)

partial number

Figure 10.10 Frequency trajectories resulting from the sinusoidal analysis of a vocal
sound.

following frame.

* FREQUENCY

TIME

Figure 10.11 Traditional peak continuation algorithm [McAS86].

392 10 Spectral Processing

The schemes used in the traditional sinusoidal model (as the one just mentioned),
incorporate all the spectral peaks into trajectories, thus obtaining a sinusoidal rep-
resentation for the whole sound. These schemes are not optimal when we want the
trajectories to follow just the stable partials, leaving the rest to be modeled as
part of the residual component. For example, when the partials significantly change
in frequency from one frame to the next, these algorithms easily switch from the
partial that they were tracking to another one, which is closer at that point.

current

freq. +
] 3 -95 !
p ?pS : p b & 06
! ! p3? new guide & p5
3 [
p "2 ' p3 o7 active :
: 1 11 g3 [Killed guide® p
— ‘ o op3
b2 Y ! 1T !
b2 0 p2
o : ' sleeping p1
i ; ©p1 ' -g1 guide ?
T T T T
n-3 n-2 n-1 n n+1 frames

Figure 10.12 Peak continuation process. g represent the guides and p the spectral peaks.

Here we will describe a basic framework under which we can define rules for
specifying the behavior of the partials of musical sounds and thus implement systems
for identifying partials out of spectral peaks. The behavior of a partial, and therefore
the way to track it, varies depending on the signal. Whether we have speech, a
harmonic instrumental tone, a gong sound, a sound of an animal, or any other, the
time-varying behavior of the partials will be different. Thus, the algorithm requires
some knowledge about the characteristics of the sound that is being analyzed.

The basic idea of the algorithm is that a set of “guides” advances in time through
the spectral peaks of each frame, looking for the appropriate peaks to be used
(according to the specified constraints) and forming trajectories out of them (see
Fig. 10.12). Thus, a guide is an abstract entity employed to create sinusoidal trajec-
tories, which are the actual result of the peak continuation process. The instanta-
neous state of the guides, including their frequency and magnitude, are continuously
updated as the guides are turned on, continued, and finally turned off. For the case
of harmonic sounds, these guides are initialized according to the harmonic series
of the detected fundamental frequency, and for inharmonic sounds, each guide is
created dynamically.

The guides use the peak values and their context, such as surrounding peaks
and fundamental frequency, to advance in time and form trajectories. For example,
by using the detected fundamental frequency and the “memory” of an incoming
trajectory to a given frame, we control the adaptation of the guides to the instan-
taneous changes in the sound. For a very harmonic sound, since all the harmonics

10.8 Techniques 393

evolve together, the fundamental should be the main control. Nevertheless, when
the sound is less harmonic and we cannot rely on the fundamental frequency as a
strong reference for all the harmonics, the information of the incoming trajectory
should have a bigger weight.

Each peak is assigned to the guide that is closest to it and that is within a
given frequency and amplitude deviation. If a guide does not find a match, it is
assumed that the corresponding trajectory must “turn off”. In inharmonic sounds,
if a guide has not found a continuation peak for a given amount of time the guide is
killed. New guides, and therefore new trajectories, are created from the peaks of the
current frame that are not incorporated into trajectories by the existing guides. If
there are killed or unused guides, a new guide can be started. Searching through the
“unclaimed” peaks of the frame for the one with the highest magnitude creates a
guide. Once the trajectories have been continued for a few frames, the short ones can
be deleted and we can fill the “gaps” encountered in long trajectories. A real-time
implementation would not be able to use the rules that make use of the information
of “future” frames.

The creation of trajectories from the spectral peaks is compatible with very
different strategies and algorithms. A promising approach is to use Hidden Markov
models [Dep93]. This type of approach might be very valuable for tracking partials
in polyphonic sounds and complex inharmonic tones.

In our Matlab implementation (M-file 10.8), we have chosen to provide a sim-
ple tracking algorithm that uses a simplified version of the techniques previously
introduced for the case of harmonic and inharmonic sounds.

M-file 10.8 (peakTrackSimple.m)
function[iloc,ival,iphase,previousiloc,previousival,
distminindex]=peakTrackSimple(nSines,nPeaks,N,

SR,pitchvalue,iftloc,iftval,iftphase,isHarm,
previousiloc,previousival);

% function[iloc,ival,iphase,previousiloc,previousival,

% distminindex]=peakTrackSimple(nSines,nPeaks,N,

% SR,pitchvalue,iftloc,iftval,iftphase,isHarm,

% previousiloc,previousival);

h

%==> simplest partial tracking

% data:

% iloc,ival,iphase: location (bin), magnitude

yA and phase of peaks (current frame)

% previousiloc,previousival,previousiphase: idem for

yA previous frame

yA iftloc, iftval, iftphase: idem of all of the peaks in the FT
% distminindex: indexes of the minimum distance

h between iloc and iftloc

% nPeaks: number of peaks detected

% nSines: number of peaks tracked

yA N: size of the FFT

394 10 Spectral Processing

% SR: sampling rate

% pitchvalue: estimated pitch value

yA isHarm: indicator of harmonicity
tmpharm = pitchvalue; %--- temporary harmonic
iloc = zeros(nSines,1);

MindB = -100;

ival = zeros(nSines,1) + MindB;
iphase = zeros(nSines,1);
distminindex = zeros(nSines,1);

Delta = 0.01;
for i=1:nSines %--- for each sinus detected
if (isHarm==1) %--- for a harmonic sound

[closestpeakmag,closestpeakindex]=min(abs((iftloc-1)/N*SR-tmpharm)) ;
tmpharm = tmpharm + pitchvalue;

else %--- for an inharmonic sound
[closestpeakmag,closestpeakindex]=min(abs(iftloc-previousiloc(i)));
end

iloc(i) = iftloc(closestpeakindex); %--- bin of the closest
ival(i) = iftval(closestpeakindex);

iphase(i) = iftphase(closestpeakindex);

dist = abs(previousiloc-iloc(i));

[distminval, distminindex(i)] = min(dist);

end

You will also need the code for the function CreateNewTrack (M-file 10.9), which
implements the initialization of newborn tracks during the peak continuation pro-
cess.

M-file 10.9 (CreateNewTrack.m)

function[newiloc,newival]=CreateNewTrack(iftloc,iftval,
previousiloc,previousival,nSines,MinMag) ;

% function[newiloc,newival]l=CreateNewTrack(iftloc,iftval,

% previousiloc,previousival,nSines,MinMag) ;

h

%==> creation of a new track by looking for a new significant

yA peak not already tracked

% data: iftlov, iftval: bin number & magnitude of peaks detected

yA previousiloc,

yA previousival: idem for previous peaks detected
yA nSines: number of sines

yA MinMag: minimum magnitude (-100 dB) for
yA 0 amplitude

%--- removing peaks already tracked

10.8 Techniques 395

for i=1:nSines
[min, ind] = min(abs(iftval - previousival(i)));
iftval(ind) = MinMag;

end

%--- keeping the maximum

[newival, ind] = max(iftval);

newiloc = iftloc(ind);

M-file 10.10 implements a visual representation of the sinusoidal tracks.

M-file 10.10 (PlotTracking.m)

function PlotTracking(SineFreq, pitch)
%function PlotTracking(SineFreq, pitch)
)

%==> plot the partial tracking

% data:
yA SineFreq: frequencies of the tracks
yA pitch: frequency of the pitch

[nSines, nFrames] = size(SineFreq);

for n=1:nSines
f=1;
while (f<=nFrames)
while (f<=nFrames & SineFreq(n,f)==0)
f = f+1;
end
iStart = min(f,nFrames);
while (f<=nFrames & SineFreq(n,f)>0)
f = f+1;
end
iEnd = min(max(1,f-1) ,nFrames);
if (iEnd > iStart)
line((iStart:iEnd), SineFreq(n,iStart:iEnd));
end
end
end

h = line((1:nFrames), pitch(1l:nFrames));

set(h,’linewidth’, 2, ’Color’, ’black’);

Residual Analysis

Once we have identified the stable partials of a sound, we are ready to subtract

them from the original signal and obtain the residual component. This subtraction
can be done either in the time domain or in the frequency domain. A time domain

396 10 Spectral Processing

approach requires that first the time domain signal is synthesized from the sinu-
soidal trajectories, while if we stay in the frequency domain, we can perform the
subtraction directly in the already computed magnitude spectrum. For the time
domain subtraction, the phases of the original sound have to be preserved in the
synthesized signal, thus we have to use a type of additive synthesis with which we
can control the instantaneous phase. A type of synthesis that is computationally
quite expensive. On the other hand, the sinusoidal subtraction in the spectral do-
main is simpler but not considerably more. Our sinusoidal information from the
analysis is very much undersampled, since for every sinusoid we only have the value
at the top of the peaks, and thus we have to generate all the frequency samples that
belong to the sinusoidal peak to be subtracted.

Once we have either the residual spectrum or the residual time signal, it is useful
to study it in order to check how well the partials of the sound were subtracted and
therefore analyzed. If partials remain in the residual, the possibilities for transfor-
mations will be reduced, mainly because it will not be possible to approximate the
residual as a stochastic signal, thus reducing its flexibility. In this case, we should
re-analyze the sound until we get a good residual, free of deterministic components.
Ideally, the resulting residual should be as close as possible to a stochastic signal.

From the residual signal, we can continue our modeling strategy. To model the
stochastic part of sounds, such as the attacks of most percussion instrument, the bow
noise in string instruments, or the breath noise in wind instruments, we need a good
time resolution and we can give up some frequency resolution. The deterministic
component cannot maintain the sharpness of attacks, because, even if a high frame-
rate is used we are forced to use a long enough window, and this size determines
most of the time resolution. When the deterministic subtraction is done in the
time domain, the time resolution in the stochastic analysis can be improved by
redefining the analysis window. The frequency domain approach implies that the
subtraction is done in the spectra computed for the deterministic analysis, thus the
STFT parameters cannot be changed [Ser89].

Since it is the deterministic signal that is subtracted from the original sound,
measured from long windows, the resulting residual signal might have the sharp
attacks smeared. To improve the stochastic analysis, we can “fix” this residual so
that the sharpness of the attacks of the original sound is preserved. The result-
ing residual is compared with the original waveform and its amplitude re-scaled
whenever the residual has a greater energy than the original waveform. Then the
stochastic analysis is performed on this scaled residual. Thus, the smaller the win-
dow the better time resolution we will get in the residual. We can also compare the
synthesized deterministic signal with the original sound and whenever this signal
has a greater energy than the original waveform it means that a smearing of the
deterministic component has been produced. This can be fixed somewhat by scal-
ing the amplitudes of the deterministic analysis in the corresponding frame by the
difference between the original sound and the deterministic signal.

10.8 Techniques 397

Sinusoidal subtraction

The first step of the Residual Analysis is the synthesis of the sinusoidal tracks
obtained as the output of the Peak Continuation algorithm. For a time domain
subtraction (see Fig. 10.13) the synthesized signal will reproduce the instantaneous
phase and amplitude of the partials of the original sound. One frame of the sinusoidal
part of the sound, d(m), is generated by

R
d(m) =" A, coslmd, +¢,], m=0,1,2,...,5 -1 (10.8)
r=1

where R is the number of trajectories present in the current frame and S is the
length of the frame. To avoid “clicks” at the frame boundaries, the parameters
A, @p, ¢ are smoothly interpolated from frame to frame.

The instantaneous amplitude A(m) is easily obtained by linear interpolation
from frame to frame. Frequency and phase values are tied together (frequency is
the phase derivative), and both control the instantaneous phase 8(m), defined by

(m) = mo + ¢. (10.9)

Different approaches are possible for computing the instantaneous phase [McAS86].
Thus we are able to synthesize one frame of a sound by

Rl
d'(m) = Al (m) cos[f..(m)] (10.10)

which goes smoothly from the previous to the current frame with each sinusoid
accounting for both the rapid phase changes (frequency) and the slowly varying
phase changes.

Residual Approximation

One of the underlying assumptions of the Sinusoidal plus Residual model is that the
residual is a stochastic signal. Such an assumption implies that the residual is fully
described by its amplitude and its general frequency characteristics (see Fig. 10.14).
It is unnecessary to keep either the instantaneous phase or the exact spectral shape
information. Based on this, a frame of the stochastic residual can be completely
characterized by the output of a filter, which has a noise input signal. The filter
encodes the amplitude and general frequency characteristics of the residual. The
representation of the residual for the overall sound will be a sequence of these
filters, i.e., a time-varying filter.

The filter design problem is generally solved by performing some sort of curve
fitting in the magnitude spectrum of the current frame [Str80, Sed88]. Standard
techniques are: spline interpolation [Cox71], the method of least squares [Sed88], or
straight-line approximations.

398 10 Spectral Processing

5000

original sound
x(n)

amplitude
o

-5000

0.105 0106 0.107 0.108 0.109 011 0.111
time (sec)

5000 synthesized sound

with phase matching
s(n)

amplitude
o

-5000

0.105 0.106 0.107 0.108 0.109 0.11 0.1
time (sec)

5000

residual sound
e(n) = w(n) x(x(n) - s(n)),
n=01,... N-1

amplitude
o

-5000

0105 0.106 0.107 0.108 0.109 011 0.111
time (sec)

Figure 10.13 Time domain substraction.

a) original spectrum
-30 T T

-40
-50

-60
-70

i
10 15 20
frequency (KHz)

b) residual spectrum and its approximation

magnitude (dB)

-80
-90
-100

L
0 5

-30

40t
B0l
60|
20k

magnitude (dB)

80 F
-90
-100

. . .
0 5 10 15 20
frequency (KHz)

Figure 10.14 (a) Original spectrum, (b) Residual spectrum and approximation.

One way to carry out the line-segment approximation is to step through the
magnitude spectrum and find local maxima in each of several defined sections, thus
giving equally spaced points in the spectrum that are connected by straight lines to
create the spectral envelope. The number of points gives the accuracy of the fit, and
can be set depending on the sound complexity. Other options are unequally spaced
points, for example, logarithmically spaced, or spaced according to other perceptual
criteria.

Another practical alternative, as already seen in chapter 9 (see 9.2.2), is to use
a type of least squares approximation called linear predictive coding, LPC [Mak75,
Mar75]. LPC is a popular technique used in speech research for fitting an nth-order

10.8 Techniques 399

polynomial to a magnitude spectrum. For our purposes, the line-segment approach
is more flexible than LPC, and although LPC results in less analysis points, the
flexibility is considered more important. For a comprehensive collection of different
approximation techniques of the residual component see [Goo97].

10.3.2 Feature analysis

The accomplishment of a meaningful parameterization for sound transformation
applications is a difficult task. We want a parameterization that offers an intuitive
control over the sound transformation process, with which we can access most of the
perceptual attributes of a sound. The analysis techniques described so far result in
a simple parameterization, appropriate for describing the lower physical character-
istics of the sound. In the Sinusoidal plus Residual model, these parameters are the
instantaneous frequency, amplitude and phase of each partial and the instantaneous
spectral characteristics of the residual signal.

There are other useful instantaneous attributes that give a higher-level abstrac-
tion of the sound characteristics. For example we can describe fundamental fre-
quency, amplitude and spectral shape of the sinusoidal component, amplitude and
spectral shape of the residual component, and the overall amplitude. These at-
tributes are calculated at each analysis frame from the output of the basic Sinusoidal
plus Residual analysis. Afterwards, some of them can be extracted.

From a digital effects design point of view, the extraction of such attributes al-
lows us to implement transformations that modify only one of those features without
affecting the rest. A clear example is illustrated in Fig. 10.2 where the fundamental
frequency is extracted, multiplied by a scaling factor, and then incorporated back
into the original spectral data.

Many other features like the degree of harmonicity, noisiness, spectral tilt, or
spectral centroid, can also be computed from the spectral representation of a sound.
Some of them are just information attributes that describe the characteristics of the
frame and have mainly found applications in sound classification tasks.

Apart from the instantaneous, or frame, values, it is also useful to have param-
eters that characterize the time evolution of the sound. The time changes can be
described by the derivatives of each one of the instantaneous attributes.

Another important step towards a musically useful parameterization is the seg-
mentation of a sound into regions that are homogeneous in terms of its sound
attributes. Then we can identify and extract region attributes that will give higher-
level control over the sound.

From the basic sinusoidal plus residual representation it is possible to extract
some of the attributes mentioned above. The critical issue is how to extract them
while minimizing interferences, thus obtaining significant high level attributes free
of correlations [Ser98]. The general process will be to first extract instantaneous
attributes and their derivatives, then segment the sound based on that information,
and finally extract region attributes.

400 10 Spectral Processing

As already indicated, the basic instantaneous attributes are: amplitude of sinu-
soidal and residual component, overall amplitude, fundamental frequency, spectral
shape of sinusoidal and residual component, harmonic distortion, noisiness, spectral
centroid, and spectral tilt. These attributes are obtained at each frame using the
information that results from the basic Sinusoidal plus Residual analysis and not
taking into account the data from previous or future frames. The amplitude of the
sinusoidal component is the sum of the amplitudes of all harmonics of one frame
expressed in dB,

l
AS = 20log,, (Z ai> (10.11)

i=1
where a; is the linear amplitude of the ith harmonic and [is the total number of
harmonics found in the frame.

The amplitude of the residual component is the sum of the absolute values of
the residual of one frame expressed in dB. This amplitude can also be computed by
adding the frequency samples of the corresponding magnitude spectrum, according
to

M-—1
AR = 20log, (Z |$R(")|>

n=0

N-1
= 20logyg (Z |XR(k>|> , (10.12)

k=0
where zg(n) is the residual sound, M is the size of the frame, X g (k) is the spectrum
of the residual sound, and N is the size of the magnitude spectrum.

The total amplitude of the sound at one frame is the sum of its absolute val-
ues expressed in dB. It can also be computed by summing the amplitudes of the
sinusoidal and residual components, as given by

M-1 N-1
A = 20log (Z |m(n)|> = 20log;o (Z |X(k)|>

k=0
l N-1
= 20log,, (Z ai+ |XR(k)|> (10.13)
i=1 k=0

where z(n) is the original sound and X (k) is its spectrum.

The fundamental frequency is the frequency that best explains the harmonics
of one frame. Many different algorithms can be used to compute the fundamental
frequency (see previous section 10.3.1, for example) but a reasonable approximation,
once we have the sinusoidal component, can be the weighted average of all the
normalized harmonic frequencies

Fo = ij x C‘i (10.14)

10.8 Techniques 401

where f; is the frequency of the ith harmonic.

The spectral shape of the sinusoidal component is the envelope described by the
amplitudes and frequencies of the harmonics, or its approximation,

Sshape = {(f1,a1)(f2,a2)...(fi,ar)}. (10.15)

The spectral shape of the residual component is an approximation of the magnitude
spectrum of the residual sound of one frame. A simple function is computed as the
line segment approximation of the spectrum,

Rshape = {61,62,...,eq,...,eNcoef} (1016)

Other spectral approximation techniques can be considered depending on the type
of residual and the application [Goo96].

The frame-to-frame variation of each attribute is a useful measure of its time
evolution, thus an indication of changes in the sound. It is computed in the same
way for each attribute,

Val(l) — Val(l — 1)
A = 10.17
HJ7, (10-17)
where Val(l) is the attribute value for the current frame, Val(l — 1) is the attribute
value for the previous one, H is the hop size and fs is the sampling rate.

As an example, the following function (M-file 10.11) implements the computation
of the spectral shape that will be used in some of the effects implemented in the
next sections.

M-file 10.11 (sort.m)
%--- sorting according to the frequencies iloc
[isortedloc, ind] = sort(iloc);
isortedval = ival(ind);
[indr, indc] = find(isortedloc);
newloc = isortedloc(indr);
newval = isortedval(indr);
%--- computing the spectral shape without redundant values
spectralShape = [];
spectralShape(1,1) = 1;
spectralShape(2,1) = MinMag;
shapePos = 1;
for i=1:length(newloc)
if newloc(i) > spectralShape(1,shapePos)
shapePos = shapePos + 1;
spectralShape(1,shapePos) = newloc(i);
spectralShape(2,shapePos) = newval(i);
end

end

%--- adding boudaries values
spectralShape(1,shapePos+1) = N/2;
spectralShape(2,shapePos+1) = MinMag;

402 10 Spectral Processing

Segmentation

Sound segmentation has proven important in automatic speech recognition and
music transcription algorithms. For our purposes it is very valuable as a way to
apply region dependent transformations. For example, a time stretching algorithm
would be able to transform the steady state regions, leaving the rest unmodified.

A musically meaningful segmentation process divides a melody into notes and
silences and then each note into an attack, a steady state and a release region.

The techniques originally developed for speech [Vid90], such as those based
on pattern recognition or knowledge-based methodologies, start to be used in mu-
sic segmentation applications [Ros98]. Most of the approaches apply classification
methods that start from sound features, such as the ones described in this chapter,
and are able to group sequences of frames into predefined categories. No reliable
and general-purpose technique has been found. Our experience is that they require
narrowing the problem to a specific type of musical signal or including a user inter-
vention stage to help directing the segmentation process.

Region attributes

Once a given sound has been segmented into regions we can compute the attributes
that describe each one. Most of the interesting attributes are the mean and variance
of each of the frame attributes for the whole region. For example, we can compute
the spectral shape or the mean and variance for the amplitude of sinusoidal and
residual components, the fundamental frequency, or the spectral tilt.

Global attributes that can characterize attacks and releases make use of the
average variation of each of the instantaneous attributes, such as average funda-
mental frequency variation, average amplitude variation, or average spectral shape
change. In the steady state regions it is important to extract the average value of
each of the instantaneous attributes and measure other global attributes such as
time-varying rate and depth of vibrato. Vibrato is a specific attribute present in
many steady state regions of sustained instrumental sounds that requires a special
treatment, [Her98].

Some region attributes can be extracted from the frame attributes in the same
way that they were extracted from the Sinusoidal plus Residual data. The result of
the extraction of the frame and region attributes is a hierarchical multi-level data
structure where each level represents a different sound abstraction.

10.3.3 Synthesis

From the output of the analysis techniques presented we can synthesize a new
sound. The similarity with respect to the original sound will depend on how well
the input sound fits the implicit model of the analysis technique and the settings of
the different variables that the given technique has. In the context of the chapter
we are interested in transforming the analysis output in order to produce a specified
effect in the synthesized sound.

10.8 Techniques 403

All these transformations can be done in the frequency domain. Afterwards, the
output sound can be synthesized using the techniques presented in this section.
The sinusoidal component will be generated using some type of additive synthe-
sis approach and the residual, if present, will be synthesized using some type of
subtractive synthesis approach.

Thus, the transformation and synthesis of a sound is done in the frequency
domain; generating sinusoids, noise, or arbitrary spectral components, and adding
them all to a spectral frame. Then, we compute a single IFFT for each frame, which
can yield efficient implementations.

Figure 10.15 shows a block diagram of the final part of the synthesis process.
Previous to that we have to transform and add all the High Level Features, if they
have been extracted, and obtain the lower level data (sine and residual) for the
frame to be synthesized. Since the stored data might have a different frame rate, or
a variable one, we also have to generate the appropriate frame by interpolating the
stored ones. These techniques are presented in the following sections.

sine .
frequencies magnitude
sine spectrum
magnitudes spectral > polar to
———» sine rectangular
sine generation n > conversion
phase .
phases spectrum window
generation
synthesis
window
() output
IFFT sound
complex
magnitude spectrum
residual spectrum
spectral polar to
spectral data | residual rectangular
generation > conversion
phase
spectrum

Figure 10.15 Diagram of the spectral synthesis.

Sinusoidal synthesis

The sinusoidal component is generated with additive synthesis, similar to the si-
nusoidal synthesis that was part of the analysis, with the difference that now the
phase trajectories might be discarded.

Additive synthesis is based on the control of the instantaneous frequency and
amplitude of a bank of oscillators, as shown in Fig. 10.16. The instantaneous am-
plitude A(m) of an oscillator is obtained by linear interpolation

(Al _ Al_l)

A(m) = A= + 5

m, (10.18)

where m =0,1,...,5 — 1 is the time sample in the I** synthesis frame.

404 10 Spectral Processing

oo [\

Freq () |/~

Amp,(t) /\/\

Freq,(t) ~" "~

Ampy(t) /\/\

Freqy(t) A~

Figure 10.16 Additive synthesis block diagram.

The instantaneous phase is taken to be the integral of the instantaneous fre-
quency, where the instantaneous radian frequency w(m) is obtained by linear inter-
polation

O(m) =o' 4 —m (10.19)

and the instantaneous phase for the r** sinusoid is given by

0,.(m) = 0,.(1 — 1) + &.(m). (10.20)

Finally, the synthesis equation becomes
Rl
d'(m) = Al(m) cos[6..(m)] (10.21)
r=1

where A(m) and 6(m) are the calculated instantaneous amplitude and phase.

A very efficient implementation of additive synthesis, when the instantaneous
phase is not preserved, is based on the inverse FFT [Rod92]. While this approach
looses some of the flexibility of the traditional oscillator bank implementation, es-
pecially the instantaneous control of frequency and magnitude, the gain in speed is
significant. This gain is based on the fact that a sinusoid in the frequency domain is
a sinc-type function, the transform of the window used, and on these functions not
all the samples carry the same weight. To generate a sinusoid in the spectral domain
it is sufficient to calculate the samples of the main lobe of the window transform,
with the appropriate magnitude, frequency and phase values. We can then synthe-
size as many sinusoids as we want by adding these main lobes in the FFT buffer and

10.8 Techniques 405

performing an IFFT to obtain the resulting time-domain signal. By an overlap-add
process we then get the time-varying characteristics of the sound. In the following
Matlab code (M-file 10.12) we implement a sinusoidal synthesis algorithm based on
this latter approach.

M-file 10.12 (sinefillspectrum.m)

function padsynthft=sinefillspectrum(iloc,ival,iphase,nSines,
willength, zp, bh92SINE2SINE, bh92SINE2SINEsize)

%function padsynthf =sinefillspectrum(iloc,ival,iphase,nSines,

% wilength, zp, bh92SINE2SINE, bh92SINE2SINEsize)

b

%=> compute the spectrum of all the sines in the frequency

% domain, in order to remove it from the signal

% data:

% padsynth:

% 1iloc, ival, iphase: location (bin), magnitude value (dB)

yA and phase of a peak

%» mnSines: number of sines (=length of ival and iloc)
% wilength: size of the analysis window

% zp: zero-padding multiplicative coefficient

% Dbh92SINE2SINE: Blackman-Harris window

% DbhO92SINE2SINEsize: Blackman-Harris window size

peakmag=10." (ival/20) ; % magnitude (in [0;1])

halflobe=8%zp/2-1; % bin number of the half lobe

firstbin=floor(iloc)-halflobe; 7% first bin for filling positive
% frequencies

firstbin2=floor(wlLength*zp-iloc+2)-halflobe;

% idem for negative frequencies

binremainder=iloc-floor(iloc);

sinphase=sin(iphase);

cosphase=cos(iphase);

findex=1-binremainder;

bh92SINE2SINEindexes =zeros(8*zp,1);

sinepadsynthft=zeros(wilLength*zp+halflobe+halflobe+1,1);

padsynthft =zeros(wlLength*zp,1);

%--- computation of the complex value
for i=1:nSines %--- for each sine
if (iloc(i)~=0) %--- JUST WORK WITH NON ZEROS VALUES OF iloc !!!
% -> tracked sines
beginindex = floor(0.5 + findex(i)*512/zp)+1;
bh92SINE2SINEindexes=[beginindex:512/zp:beginindex ...
+512/zp* (8*zp-1)17;
if (bh92SINE2SINEindexes (8*zp)>bh92SINE2SINEsize)
bh92SINE2SINEindexes (8*zp) =bh92SINE2SINEsize;

406 10 Spectral Processing

end
magsin=bh92SINE2SINE (bh92SINE2SINEindexes)
.*sinphase(i)*peakmag(i);
magcos=bh92SINE2SINE (bh92SINE2SINEindexes)
.*cosphase (i) *peakmag (i) ;
%-—— f£ill positive frequency
sinepadsynthft (firstbin(i)+halflobe:firstbin(i)
+halflobe+8*zp-1)= ...
sinepadsynthft (firstbin(i)+halflobe:firstbin(i)+ ...
halflobe+8*zp-1)+(magcos+j*magsin) ;
%—-—— £ill negative frequency
if (firstbin2(i)+halflobe <= wlLength*zp)
sinepadsynthft (firstbin2(i)+halflobe:firstbin2(i)
+halflobe+8*zp-1)= ...
sinepadsynthft (firstbin2(i)+halflobe:firstbin2(i)+ ...
halflobe+8*zp-1)+(magcos—-j*magsin) ;
end
end
end

%--- fill padsynthft
padsynthft=padsynthft+sinepadsynthft(halflobe+l:halflobe+1 ...
+wilength*zp-1);
padsynthft(l:halflobe) = padsynthft(l:halflobe) + ...
sinepadsynthft (wiLength*zp+1:wllength*zp+halflobe);
padsynthft (wiLength*zp-halflobe+1:willength*zp) = ...
padsynthft (wiLength*zp-halflobe+1:wllength*zp)
+ sinepadsynthft(1:halflobe);

The synthesis frame rate is completely independent of the analysis one. In the
implementation using the IFFT we want to have a frame rate high enough so as
to preserve the temporal characteristics of the sound. As in all short-time based
processes we have the problem of having to make a compromise between time and
frequency resolution. The window transform should have the fewest possible signifi-
cant bins since this will be the number of points required to generate each sinusoid.
A good window choice is the Blackman-Harris 92dB because, as already explained
in section 10.3.1, its main lobe includes most of the energy. However the problem
is that such a window does not overlap perfectly to a constant in the time domain
without having to use very high overlap factors, thus very high frame rates. A solu-
tion to this problem [Rod92] is to undo the effect of the window by dividing by it in
the time domain and applying a triangular window before performing the overlap-
add process. This will give a good time-frequency compromise. The Matlab code
for generating the triangular windowis given by M-file 10.13.

M-file 10.13 (triang.m)
function w = triang(n)

10.8 Techniques 407

% TRIANG Triangular window.
if rem(n,2)

% It’s an odd length sequence
w = 2x(1:(n+1)/2)/(n+1);

w = [ww((n-1)/2:-1:1)]1°;
else

% It’s even

w = (2%(1: (n+1)/2)-1) /n;

w = [wwn/2:-1:1)]1;

end

Residual synthesis

The synthesis of the residual component of the sound is also performed in the
frequency domain (see Fig. 10.17). When the analyzed residual has not been ap-
proximated, i.e. it is represented as a magnitude and phase spectrum for each frame,
as a STFT, each residual spectrum is added to the spectrum of the sinusoidal com-
ponent at each frame. But when a magnitude spectral envelope has approximated
the residual, an appropriate complex spectrum has to be generated.

rana

mwwm random spectral phase

W synthesized sound
!
I synthesized sound
| with window

T use
0 DR LA

— spectral magnitude

W/F’ N approximation of residual
® ah

N I

Figure 10.17 Residual synthesis approximation.

The synthesis of a stochastic signal from the residual approximation can be
understood as the generation of noise that has the frequency and amplitude charac-
teristics described by the spectral magnitude envelopes. The intuitive operation is
to filter white noise with these frequency envelopes, that is, perform a time-varying
filtering of white noise, which is generally implemented using the time-domain con-
volution of white noise with the impulse response corresponding to the spectral
envelope of a frame. We do it in the frequency domain by creating a magnitude
spectrum from the approximated one, or its transformation, and generating a ran-
dom phase spectrum with new values at each frame in order to avoid periodicity.

408 10 Spectral Processing

Integration of Sinusoidal and Residual synthesis

Once the two spectral components are generated, we have to add the spectrum
of the residual component to that of the sinusoids. In the process of generating
the noise spectrum there has not been any window applied, since the data was
added directly into the spectrum without any smoothing consideration, but in the
sinusoidal synthesis we have used a Blackman-Harris 92dB, which is undone in
the time domain after the IFFT. Therefore we should apply the same window to
the noise spectrum before adding it to the sinusoidal spectrum. Convolving the
transform of the Blackman-Harris 92dB by the noise spectrum accomplishes this,
and there is only the need to use the main lobe of the window since it includes
most of its energy. This is implemented quite efficiently because it only involves
a few bins and the window is symmetric. Then we can use a single IFFT for the
combined spectrum (see Fig. 10.18). Finally in the time domain we undo the effect
of the Blackman-Harris 92dB and impose the triangular window. By an overlap-add
process we combine successive frames to get the time-varying characteristics of the
sound.

Sinousoidal data
-

convolution for each sinusoid

m synthesis Synthesized
. \ window sound

Blackman-Harris
92.dB

IFFT >

convolution for whole spectrum

Residual
spectral data

Figure 10.18 Integrating sinusoidal plus residual synthesis.

Several other approaches have been used for synthesizing the output of a sinu-
soidal plus residual analysis. However, these techniques include modifications to the
model as a whole (see [Fit00], for example).

10.3.4 Main Analysis-Synthesis Application

In the following Matlab code (M-file 10.14), we make use of all the previous func-
tions in order to implement a complete analysis-synthesis process. We will use this
framework to implement sound effects in the next sections. Note, that no residual
approximation is used in this implementation.

M-file 10.14 (SMS.m)
yA
% SMS-Matlab like emulation

10.8 Techniques 409

ot

clear all

close all

%»==== USER DATA =====
DAFx_in = wavread(’love.wav’); % wave file
SR = 44100; 7 sampling rate
willLength = 2048; % analysis window size
nl = 256; % analysis window hop size
nPeaks = 100; % number of peaks detected
nSines = 50; % number of sinuosoids to track (and synthetise)
minSpacePeaks = 2; J minimum space (bins) between two picked peaks
Zp = 2; % zero-padding coefficient
rgain =1.; % gain for the residual component
MaxFreq = 11000; 7% maximum frequency, in Hertz, for plottings
MinMag = -100; % minimum magnitude, in dB, for plottings
%h--- figure data
hfigl = ’yes’; % if uncommented, will plot the Blackman-Harris
% window
%fig2 = ’yes’; % if uncommented, will plot the peaks detection

% and tracking in one frame

%fig3 = ’yes’; % if uncommented, will plot the peak trackings
% real-time

hfigd = ’yes’; ¥ if uncommented, will plot the original and
% the transformed FFT in one frame

%figh = ’yes’; % if uncommented, will plot the peak trackings
% only at the end of the process

»figh = ’yes’; J if uncommented, will plot the original signal,
% its sine and residual part,
% and the transformed signal

=== Definition of the Windows ===

%--- definition of the analysis window

fConst=2%pi/(wlLength+1-1);

wl=[1:wlLength]’;

w1=.35875 -.48829%cos(fConst*wl)+.14128*cos(fConst*2*wl)
-.01168*cos(fConst*3*wl) ;

wl=wl/sum(wl)*2;

N=wilLength*zp;), new size of the window

%--- synthesis window
w2=wl;

n2=nl;

%--- triangular window

wt2=triang(n2*2+1); J triangular window
%»--- main lobe table of bh92

410 10 Spectral Processing

[bh92SINE2SINE,bh92SINE2SINEsize]=bh92SINE2SINEgeneration;

%--- data for the loops
frametime = n1/SR;

pin = 0;

pout = 0;

TuneLength=length (DAFx_in);
pend=TunelLength-wlLength;

%=== Definition of the data arrays ===
DAFx_in = [zeros(wlLength/2-n1-1,1); DAFx_in];

DAFx_outsine = zeros(TunelLength,1);
DAFx_outres = zeros(TunelLength,1);

%--- arrays for the partial tracking

iloc = zeros(nSines,1);

ival = zeros(nSines,1);

iphase = zeros(nSines,1);

previousiloc = zeros(nSines,1);

previousival = zeros(nSines,1);

maxSines = 400; % maximum voices for harmonizer
syniloc = zeros(maxSines,1);

synival = zeros(maxSines,1);

previoussyniloc = zeros(maxSines,1);
previousiphase zeros (maxSines, 1) ;
currentiphase = zeros(maxSines,1);

%--- arrays for the sinus’ frequencies and amplitudes
SineFreq = zeros(nSines,ceil (TunelLength/n2));

SineAmp = zeros(nSines,ceil(TuneLength/n2));

pitch = zeros(1,1+ceil(pend/n1));

pitcherr = zeros(1l,1+ceil(pend/nl1));

%--- creating figures ---
if (exist(Pfigl’))
h = figure(1); set(h,’position’, [10, 45, 200, 200]);
end
if (exist(’fig2’))
h = figure(2); set(h,’position’, [10, 320, 450, 350]);
axisFig2 = [0 MaxFreq MinMag O0]; zoom on;
end
if (exist(’£ig3?))
h = figure(3); set(h,’position’, [220, 45, 550, 200]);
axisFig3 = [1 1+ceil(pend/nl) 0 MaxFreql; zoom on;
end
if (exist(Pfigd’))
h = figure(4); set(h,’position’, [470, 320, 450, 350]);
axisFig4 = [0 MaxFreq MinMag O]; zoom on;

10.8 Techniques 411

end
if (exist(’figh?’))
h = figure(5); set(h,’position’, [220, 45, 550, 200]1);
axisFigh = [1 1+ceil(pend/nl) 0 MaxFreql; zoom on;
end

%--- plot the Blackman-Harris window
if (exist(Pfigl’))
figure(1)

plot (20*1logl0(abs (fftshift (fft (bh92SINE2SINE) /bh92SINE2SINEsize))))
title(’Blackman-Harris window’) ;xlabel(’Samples’);

ylabel(’ Amplitude’)

end

tic
%»UU
disp(’analazing frame ...%);

while pin<pend
%--- windowing
grain = DAFx_in(pin+l:pin+wllength) .*wl(1l:wllLength);
%--- zero padding
padgrain = zeros(N,1);
padgrain(l:wiLength/2)
padgrain(N-wilLength/2+1:N)

grain(wiLength/2+1:willLength) ;
grain(l:wilength/2);

%--- fft computation
f = fft(padgrain);
r = abs(f);

phi = angle(f);

ft = r.xexp(j*phi);

%--- peak detection (and their plottings)
[ftloc, ftvall=PickPeaks(r(1:N/2),nPeaks,minSpacePeaks);

%--- calculate interpolated values (peak position,phase,amplitude)
[iftloc, iftphase, iftval] = ...
interpolatedValues (r,phi,N,zp,ftloc,ftval);

%--- pitch detection
[pitchvalue,pitcherror,isHarm] = ...

pitchDetection (r,N,SR,nPeaks,iftloc,iftval);
pitch(1+pin/nl1) = pitchvalue*isHarm;
pitcherr(1+pin/nl) = pitcherror;

412 10 Spectral Processing

%--- peaks tracking
if (pin==0) %--- for the first frame
nNewPeaks = nSines;
else J--- creating new born tracks
for i=1:nSines
if (previousiloc(i)==0)
[previousiloc(i), previousival(i)] = CreateNewTrack ...
(iftloc, iftval, previousiloc, previousival, nSines, MinMag) ;
nNewPeaks = nNewPeaks - 1;
end
end

%--- simple Peak tracker

[iloc,ival,iphase,previousiloc,previousival ,distminindex] = ...
peakTrackSimple(nSines,nPeaks,N,SR,pitchvalue,iftloc,
iftval,iftphase,isHarm,previousiloc,previousival);

end

%--- savings
previousival = ival;
previousiloc = iloc;
SineFreq(:,1+pin/nl)=max((iloc-1)/N*SR,0.);
% frequency of the partials
SineAmp(:,1+pin/ni)=max(ival, MinMag);
% amplitudes of the partials

max(1,iloc);
ival;

syniloc(1:nSines)
synival(1:nSines)

if (exist(’fig3’)) % plot: the trackings of partials
figure(3); clf; hold on
PlotTracking(SineFreq(:,1:1+pin/n1), pitch(l:1+pin/nl));
xlabel (’Frame number’) ;ylabel (’Frequency (Hz)’);
axis(axisFig3);title(’Peak tracking’); drawnow
end

%--- residual computation

resfft = ft;

if (isHarm==1)

resfft=resfft-sinefillspectrum(iloc,ival,iphase,nSines,...
wilength, zp, bh92SINE2SINE, bh92SINE2SINEsize);

end

%h--- figures
if (exist(P£fig2’))
figure(2); clf; hold on

10.8 Techniques 413

% plot: FFT of the windowed signal (Hz,dB)
plot ((1:N/2)/N*SR, 20*logl0(r(1:N/2)));
for 1=1:nPeaks % plot: the peaks detected
plot([ftloc(1)-1 ftloc(1l)-1]/N*SR, ..
[20%1og10(ftval(l)) ,MinMag-1],’r:x’);
end
for 1=1:nSines % plot: sines tracked and the residual part
plot([iloc(1)-1, iloc(1)-1]1/N*SR, [ival(l), MinMag-1],°k’)
end
plot ((1:N/2)/N*SR, 20*logl0(abs(resfft(1:N/2))),’g’);
if (isHarm) % plot: true pitch of each harmonic
for 1=1:nSines
plot ([pitchvalue*l, pitchvaluex1],[1, MinMag-1],’y:’)
end
end
xlabel (’Frequency (Hz)’);ylabel(’Magnitude (dB)’);axis(axisFig2);
title(’Peak detection and tracking for one frame’); drawnow
end

nSynSines = nSines;

T ot to o oo ToToTo o e ToTo o o o o To T o 1o 1o oo o T T o 1o o o o T T Fo T o oo oo T T oo oo o Yo T o o oo o

llolololotototototototototololololo ot o oo oo o o otototo o oloto o ote o o o ot to oo toto o oo oo o o o ote

T 1ot to ol T To o To o Jo o To ToTo 1o 1o o o o To T T o o oo T To T T 1o oo o o To T oo o o o o T oo o o o

Synthesis =====
%--- phase computation
if (pin > 0)

for i=1:nSynSines
if (syniloc(i)~=0)
ifreq = (previoussyniloc(distminindex(i))+ syniloc(i))/2;
% average bin
freq = (ifreq-1)/NxSR; % freq in Hz (if loc=1 --> freq=0)
currentiphase (i)=unwrap2pi(previousiphase(distminindex(i))+...
2xpi*freqxframetime) ;
end
end
end

previoussynival = synival;
syniloc;
currentiphase;

previoussyniloc
previousiphase

%--- compute sine spectrum

414 10 Spectral Processing

padsynthft=sinefillspectrum(syniloc, synival, currentiphase,
nSynSines,wilength, zp, bh92SINE2SINE, bh92SINE2SINEsize);

if (isHarm==0)

padsynthft = zeros(size(padsynthft));

end

%--- residual computation

respadgrain=real (ifft(resfft));

resgrain=[respadgrain(N-wiLength/2+1:N);

respadgrain(l:wilength/2)]./w2(1:wllength) ;

ressynthgrain=wt2(1:n2%2) .*resgrain(wllLength/2-n2:wllength/2+n2-1);

DAFx_outres (pout+1:pout+n2%2)=DAFx_outres (pout+1:pout+n2*2)+ ...
ressynthgrain;

%--- sinusoidal computation

sinpadgrain=real (ifft (padsynthft));

singrain=[sinpadgrain(N-wiLength/2+1:N) ;
sinpadgrain(l:wilLength/2)]./w2(1:wiLength);

sinsynthgrain=wt2(1:n2%2) .*singrain(wiLength/2-n2:wilength/2+n2-1) ;

DAFx_outsine(pout+1:pout+n2*2)=DAFx_outsine(pout+l:pout+n2*2)+ ...
sinsynthgrain;

%--- figure with original signal and transformed signal FFT
synthr = abs(fft(respadgrain + sinpadgrain));

if (exist(’figd’))

figure(4); clf; hold on

plot ((1:N/2)/N*SR, 20*1loglO(r(1:N/2)),’b:’); axis(axisFigd);
plot ((1:N/2)/N*SR, 20*loglO(synthr(1:N/2)),’r’);

figure(4);

xlabel (’Frequency (Hz)’);ylabel(’Magnitude (dB)’);axis(axisFig4);
title (’FFT of original (blue) and transformed (red) signals’);
drawnow

end

%-—-- increment loop indexes

pin = pin + nl;

pout = pout + n2;

disp(pin/nl);
end
%UU
toc

%===== write output sounds =====

DAFx_in = DAFx_in(wlLength/2-n1:length(DAFx_in));
% remove the zeros added for the process
DAFx_outresynth = DAFx_outsine(1:TuneLength)+ ...

10.4 FX and Transformations 415

rgain*DAFx_outres(1:TunelLength);

mm = max(abs(DAFx_outresynth));

wavwrite (DAFx_outresynth/mm, SR, ’DAFx_out.wav’);
wavwrite (DAFx_outsine/mm, SR, ’DAFx_outsine.wav’);
wavwrite (DAFx_outres/mm, SR ,’DAFx_outres.wav’);

if (exist(’£fig3’)==0 & exist(’figh’))% plot: trackings of partials
% only at the end of the process

figure(5); clf; hold on

PlotTracking(SineFreq(:,1:1+pend/nl), pitch(l:1+pend/nl1));

xlabel (’Frame number’); ylabel(’Frequency (Hz)’); axis(axisFigh);

title(’Peak tracking’); drawnow

end

if (exist(’fig6’)) % plot the input signal, its sinus

% and its residual part, and the transformed signal
figure(6)
subplot(4,1,1); plot(DAFx_in); xlabel(’input signal’);
subplot(4,1,2); plot(DAFx_outsine) ;xlabel(’sinus part’);
subplot(4,1,3); plot(DAFx_outres);xlabel(’residual part’);
subplot(4,1,4); plot(DAFx_outresynth);
xlabel (’resynthetized signal’);
end

10.4 FX and Transformations

In this section we introduce a set of effects and transformations based on the
analysis-synthesis framework introduced throughout this chapter. All of them are
accompanied by their corresponding Matlab code. In order to use them, you just

have to add the code of the effect to use under the “= Transformation =" line in
the main analysis-synthesis application code of the previous section.

10.4.1 Filtering with Arbitrary Resolution

Filters are probably the paradigm of a “classical” effect. Many different implemen-
tations are provided in the general DSP literature and in the previous chapters of
this book. Here we introduce a different approach that differs in many aspects from
the classical one.

For our “filter” implementation, we take advantage of the sinusoidal plus residual
model in order to modify the amplitude of any arbitrary partial present in the
sinusoidal component.

For example, we can implement a bandpass filter defined by (z, y) points where x
is the frequency value in Hertz and y is the amplitude factor to apply (see Fig. 10.19).

416

10 Spectral Processing

In the example code given below, we define a bandpass filter with passband range

[2100 3000].

20
fin kHz

Figure 10.19 Bandpass filter with arbitrary resolution.

M-file 10.15 (ch10_t_filter_arb.m)

%===== Filtering with arbitrary resolution =====

Filter = [0 2099 2100 3000 3001 22050 ; 0 0110 0];
[syniloc,ind] = sort(iloc);

FilterEnvelope = interpl(Filter(1,:)’,Filter(2,:)’,syniloc/N*SR);
synival = ival(ind)+(20*logl0(max(FilterEnvelope,107°-9)));
synival(ind) = synival;

syniloc(ind) syniloc;

As shown, our filter does not need to be characterized by a traditional transfer
function, and more complex functions can be defined by summing delta-functions.

For example, the following code filters out the even partials of the input sound.
If applied to a sound with a broadband spectrum, like a vocal sound, it will convert

it to a clarinet-like sound.

M-file 10.16 (ch10_t_voice2clar.m)
%=== voice to clarinet ===
syniloc = iloc;
synival = ival;
if (isHarm == 1)

for i=1:nSines

harmNum = round(((iloc(i)-1)/wiLength*SR/2)/pitchvalue) ;
if (mod(harmNum,2)==0) % case of an even harmonic number

synival(i) = MinMag;

end
end
end

10.4.2 Partial Dependent Frequency Scaling

In a similar way, we can apply a frequency scaling to the sinusoidal components of
our modeled sound. In that way, we can transpose all the partials in the spectrum or

10.4 FX and Transformations 417

reproduce pseudo-inharmonicities like frequency stretching of higher partials, which
is representative for a piano sound.

In this first example we introduce a frequency shift factor to all the partials of
our sound (see Fig. 10.20). Note, though, that if a constant is added to every partial
of a harmonic spectrum, the resulting sound will be inharmonic.

U

Figure 10.20 Frequency shift of the partials.

M-file 10.17 (ch10_t_freqshift.m)

%==== Frequency Shift =====
fstretch = 300; 7 frequency shift in Hz
syniloc = iloc + round(fstretch/SR*N);

syniloc = syniloc.*(syniloc<=N/2);

Another effect we can implement following this same idea is to add a stretching
factor to the frequency of every partial. The relative shift of every partial will
depend on its original partial index, following the formula

fi=fi fs(tl;elt?:h (10.22)

Figure 10.21 illustrates this frequency stretching.

R

Figure 10.21 Frequency stretching.

M-file 10.18 (ch10_t_fregstretch.m)
h===== Frequency Stretch =====
fstretch = 1.1;
[syniloc,ind] = sort(iloc);
syniloc = syniloc.*((fstretch).”[0:nSines-1]’);

syniloc = syniloc.*(syniloc<=N/2);

In the same way, we can scale all the partials multiplying them by a given scaling
factor. Note, that this effect will act as a pitch shifter without timbre preservation.

418 10 Spectral Processing

M-file 10.19 (ch10_t_fregscale.m)

%==== Frequency Scale =====
fscale = 1.6; ¥ frequency scaling factor
syniloc = iloc * fscale;
syniloc = syniloc.*(syniloc<=N/2);

10.4.3 Pitch Transposition with Timbre Preservation

In section 9.3.4, a technique was introduce in order to transpose the pitch of a sound
without affecting its timbre. Here we use a similar technique in order to preserve
the spectral shape of only the sinusoidal component. For that reason we scale the
frequency of each partial applying the original spectral shape.

M-file 10.20 (ch10_t_pitchtimbre.m)

%===== Pitch transposition with timbre preservation =====
if (isHarm == 1)
t = 2. % pitch transposition factor
p p p

[spectralShape, shapePos]=CalculateSpectralShape(iloc,...
ival,MinMag,N);
[syniloc, synivall= PitchTransposition(iloc,ival,...
spectralShape, shapePos,pt,N) ;
%—-—— comb filtering the residual
CombCoef = 1;
if (isHarm==1)
resfft = CombFilter(resfft, N, SR/(pitchvaluex*pt), CombCoef) ;
end

end

The function PitchTransposition is given by:

M-file 10.21 (PitchTransposition.m)

%===== Pitch Transposition =====

function [syniloc,synival]=PitchTransposition(iloc,ival,
spectralShape, shapePos,pt,N)

syniloc = iloc.*pt;

syniloc = syniloc.*(syniloc<=N/2);

%lin. interpol. of the spectral shape for synival computation

if shapePos > 1

synival=interpl(spectralShape(1,:)’,spectralShape(2,:)’,syniloc);

else

synival = ival;

end

The function CombFilter is implemented as:

M-file 10.22 (CombFilter.m)
function combFT = CombFilter (FT, N, delay, ampl)

10.4 FX and Transformations 419

%===> Comb filter in the frequency domain

% data:

yA combFT: FT of the signal comb filtered

yA FT: FT of the signal to filtered

h N: size of the FT

yA delay: delay to apply, in samples

yA ampl: amplitude of the multiplying coefficient (in [0,1])

coef = ampl * exp(-2*j*pix*delay*(0:N-1)/N)’;
combFT = FT .* (1 + coef + coef."2);

Pitch Discretization to Temperate Scale

An interesting effect can be accomplished by forcing the pitch to take the nearest
frequency value of the temperate scale. It is indeed a very particular case of pitch
transposition where the pitch is quantified to one of the 12 semitones of an octave.
This effect is widely used on vocal sounds for dance music and is many times referred
to with the misleading name of vocoder effect.

M-file 10.23 (ch10_t_PitchDiscrete.m)
%===== Pitch discretization to temperate scale =====
if (pitchvalue "= 0)

nst = round(12*log(pitchvalue/55)/1log(2));

discpitch = 55%((27(1/12)) nst); J, discretized pitch

pt = discpitch/pitchvalue ; % pitch transposition factor
[spectralShape, shapePos]=CalculateSpectralShape(iloc,ival,
MinMag,N) ;

[syniloc, synivall=PitchTransposition(iloc,ival,spectralShape,
shapePos,pt,N);
%——— comb filtering the residual
CombCoef = 1;
if (isHarm==1)
resfft = CombFilter(resfft, N, SR/(pitchvaluex*pt), CombCoef);
end
end;

10.4.4 Vibrato and Tremolo

Vibrato and tremolo are common effects used in different kinds of acoustical instru-
ments, including the human voice. Both are low frequency modulations: vibrato is
applied to the frequency and tremolo to the amplitude of the partials. Note, though,
that in this particular implementation, both effects share the same modulation fre-
quency.

M-file 10.24 (ch10_t_vibtrem.m)
%===== vibrato and tremolo =====
if (isHarm == 1)

420 10 Spectral Processing

vtf = 5; % vibrato-tremolo frequency in Hz

va = 10; % vibrato depth in percentil

td = 3; % tremolo depth in dB

synival = ival + td*sin(2*pi*vtf*pin/SR); % tremolo

pt=1+va/200*sin(2*pi*vtf*pin/SR) ;% pitch transposition factor
[spectralShape, shapePos] = CalculateSpectralShape(iloc,
ival,MinMag,N);
[syniloc,synival]=PitchTransposition(iloc,ival, spectralShape,
shapePos,pt,N);

%—-—— comb filtering the residual

CombCoef = 1;

resfft = CombFilter(resfft, N, SR/(pitchvaluexpt), CombCoef) ;
end

10.4.5 Spectral Shape Shift

As already seen in the previous chapter, many interesting effects can be accom-
plished by shifting the spectral shape or spectral envelope of the sinusoidal compo-
nents of a sound. This shift is performed in such a way that no new partials are
generated, just the amplitude envelope of the sinusoidal components is modified (see
Fig. 10.22). In the following code we implement a shift of the spectral envelope by
just modifying the amplitude of the partials according to the values of the shifted
version of the spectral shape.

Figure 10.22 Spectral shape shift of value Af.

M-file 10.25 (ch10_t_SpectSS.m)

%h===== Spectral Shape Shift (positive or negative) =====
sss = -200; % spectral shape shift value in Hz
%--- spectral shape computation
[spectralShape,shapePos]=CalculateSpectralShape(iloc,
ival,MinMag,N) ;

%--- spectral shape shift

syniloc = zeros(nSines,1);

if shapePos > 1
[shiftedSpectralShape,shapePos]=SpectralShapeShift(sss,
iloc, ival, spectralShape, shapePos, N, SR);

end

syniloc = iloc;

10.4 FX and Transformations 421

%linear interpol. of the spectral shape for synival computation
if shapePos > 1

synival = interpl(shiftedSpectralShape(1l,1:shapePos+1)’,
shiftedSpectralShape(2,1:shapePos+1)’, syniloc, ’linear’);

else

synival = ival;

end

The function SpectralShapeShift is implemented as follows:

M-file 10.26 (SpectralShapeShift.m)
%===== Spectral Shape Shift =====
function [shiftedSpectralShape,shapePos]=SpectralShapeShift(sss,
iloc, ival, spectralShape, shapePos, N, SR)
shiftedSpectralShape = spectralShape;
sssn = round (sss*N/SR);’% spectral shape shift in number of bins
if sssn > 0
shiftedSpectralShape(1,2:shapePos)=min(N/2,
spectralShape(1,2:shapePos) + sssn);
for i=shapePos:-1:1
if shiftedSpectralShape(1l,i) < N/2
shapePos = 1i;
break;
end;
end;
else
shiftedSpectralShape(1,2:shapePos)= ...
max (1,spectralShape(1,2:shapePos)+ sssn);
for i=1:shapePos
if shiftedSpectralShape(1,i) > 1
shiftedSpectralShape(1,2:2+shapePos+1-i) = ...
shiftedSpectralShape(1,i:shapePos+1) ;
shapePos = shapePos-(i-2);
break;
end;
end;
end;

10.4.6 Gender Change

Using the results of 10.4.3 and 10.4.5 we can change the gender of a given vocal
sound. Note how by combining different “basic” effects we are able to step higher in
the level of abstraction and get closer to what a naive user could ask for in a sound
transformation environment, such as having a gender control on a vocal processor.

In this implementation, we apply two transformations in order to convert a male
voice into a female one (variable tr="m2f’). The first one is a pitch transposition

422 10 Spectral Processing

an octave higher. The other one is a shift in the spectral shape . The theoretical
explanation to this effect is that women change their formant (resonant filters)
frequencies depending on the pitch. That is, when a female singer rises up the
pitch, the formants move along with the fundamental frequency.

To convert a female into a male voice (variable tr="£2m’) we also apply a pitch
transposition and a shift in the spectral shape. This shifting has to be applied in a
way the formants of the female voice remain stable along different pitches.

M-file 10.27 (ch10_t_gender.m)

h===== gender change: woman to man =====

tr="m2f’; %male to female

%tr="f2m’; %female to male

if (isHarm == 1)

pitchmin=100;

pitchmax=500;

sssmax = 50;

if (pitchvalue<pitchmin)

sss = 0;

elseif (pitchvalue>pitchmax)

SSs = sssmax;

else

sss = (pitchvalue-pitchmin)/((pitchmax-pitchmin)/sssmax) ;

end

if (tr=="£2m’)

Sss=-sss;

pt=0.5;

else

pt=2;

end

%--- spectral shape computation
[spectralShape,shapePos]=CalculateSpectralShape(iloc,ival,MinMag,N);

% —--- spectral shape shift

syniloc = zeros(nSines,1);

if shapePos > 1
[shiftedSpectralShape,shapePos]=SpectralShapeShift(sss,iloc,...
ival,spectralShape,shapePos,N,SR);

end

syniloc = iloc;

%linear interpol. of the spectral shape for synival computation
if shapePos > 1

synival = interpl(shiftedSpectralShape(1l,1:shapePos+1)’,

shiftedSpectralShape(2,1:shapePos+1)’, syniloc, ’linear’);

else

synival = ival;

end

%--- pitch transposition

10.4 FX and Transformations 423

pt = 0.5;

[syniloc, synival] = PitchTransposition(iloc,ival,spectralShape,
shapePos,pt,N);

%--- comb filtering the residual

CombCoef = 1;

if (isHarm==1)

resfft = CombFilter(resfft, N, SR/(pitchvaluex*pt), CombCoef) ;
end

end

10.4.7 Harmonizer

In order to create the effect of a harmonizing vocal chorus, we can add pitch-shifted
versions of the original voice (with the same timbre) and force them to be in tune
with the original melody.

M-file 10.28 (ch10_t_harmonizer.m)
%===== harmonizer =====
nVoices = 2;
nSynSines = nSines*(1+nVoices);
[spectralShape, shapePos] = CalculateSpectralShape(....
syniloc(1:nSines), synival(l:nSines), MinMag, N);
synival(1:nSines) = synival(l:nSines) - 100;
pt = [1.3 1.5]; % pitch transposition factor
ac = [-1 -2]; J amplitude change factor in dB
for i=1:nVoices
[tmpsyniloc, tmpsynival] = PitchTransposition(...
syniloc(1:nSines), synival(l:nSines),...
spectralShape, shapePos, pt(i), N);
tmpsynival = tmpsynival + ac(i);
syniloc(nSines*i+1:nSines*(i+1)) = tmpsyniloc;
synival (nSines*i+1:nSines*(i+1)) = tmpsynival;
if (pin > 0)
distminindex(nSines*i+1:nSines*(i+1))= ...
distminindex(1:nSines)+nSinesx*i;

end
end

10.4.8 Hoarseness

Although hoarseness is sometimes thought of as a symptom of some kind of vocal
disorder [Chi94], this effect has sometimes been used by singers in order to resemble
the voice of famous performers (Louis Armstrong or Tom Waits, for example). In
this elemental approximation, we accomplish a similar effect by just applying a gain
to the residual component of our analysis.

424 10 Spectral Processing

M-file 10.29 (ch10_t_hoarse.m)
rgain = 2; J gain factor applied to the residual

10.4.9 Morphing

Morphing is a transformation with which, out of two or more elements, we can
generate new ones with hybrid properties.

With different names, and using different signal processing techniques, the idea
of audio morphing is well known in the computer music community [Ser94, Tel95,
Osa95, Sla96]. In most of these techniques, the morph is based on the interpola-
tion of sound parameterizations resulting from analysis/synthesis techniques, such
as the Short-time Fourier Transform (STFT), Linear Predictive Coding (LPC) or
Sinusoidal Models (see cross synthesis and spectral interpolation in sections 9.3.1
and 9.3.3, respectively).

In the following Matlab code we introduce a morphing algorithm based on the
interpolation of the frequency, phase, and amplitude of the sinusoidal component of
two sounds. The factor alpha controls the amount of the first sound we will have
in the resulting morph. Different controlling factors could be introduced for more
flexibility. Note, that if the sounds have different durations, the sound resulting
from the morphing will have the duration of the shortest one.

Next, we include the code lines that have to be inserted in the transformation
part. However, the morph transformation requires two or more inputs we have not
included in order to keep the code short and understandable. Therefore the code
will have to include the following modifications:

1. Read two input sounds:

DAFx_inl wavread(’sourcel.wav’);
DAFx_in2 = wavread(’source2.wav’);

2. Analyze both sounds. This means every analysis code line will have to be
duplicated using the variable names:

ilocl, iloc2, ivall, ival2,

iphasel, iphase2, synilocl, syniloc2, synivall, synival2,
syniphasel, syniphase2, distminindexl, distminindex2,
previousilocl, previousiloc2, previousivall, previousival2,
pitchl, pitch2, and pitcherrorl, pitcherror2.

M-file 10.30 (ch10_t_morph.m)

%=== Morphing ===

%--- sorting the frequencies in bins; ilocl, iloc2
[synilocl, indl1l] = sort(ilocl);

synivall = ivall(indl);

syniphasel = iphasel(indl);

10.5 Content Dependent Processing 425

distminindexl = distminindex1(indl);

[syniloc2, ind2] = sort(iloc2);

synival2 = ival2(ind2);

syniphase2 = iphase2(ind2);

distminindex2 = distminindex2(ind2);

%--- interpolation -----

alpha = 0.5; % interpolation factor

syniloc = alpha*synilocl + (1-alpha)*syniloc2;
synival = alpha*synivall + (l-alpha)*synival2;
%--- pitch computation

isHarmsyn = isHarml*isHarm2;

if (isHarmsyn ==1)

npitchpeaks = min(50,nPeaks);
[pitchvalue,pitcherror]=
TWM(syniloc(1l:npitchpeaks),synival(l:npitchpeaks),N,SR);
else

pitchvalue = 0;
pitcherror = 0;
end

if (pin==0) %--- for the first frame
nNewPeaks = nSines;
else
%--- creation of new born tracks
for i=1:nSines
if (previoussyniloc(i)==0)
[previoussyniloc(i) ,previoussynival (i)]=CreateNewTrack ...
(syniloc,synival,previoussyniloc,previoussynival ,nSines,MinMag) ;
nNewPeaks = nNewPeaks - 1;
end
end
%--- peak tracking of the peaks of the synthetized signal
[syniloc,synival,syniphase,previoussyniloc,previoussynival,
distminindex]=peakTrackSimple (nSines,nPeaks,N,SR,pitchvalue,...
syniloc,synival,syniphase,isHarmsyn,previoussyniloc,
previoussynival);
end

10.5 Content Dependent Processing

The hierarchical data structure that includes a complete description of a given sound
offers many possibilities for sound transformations. Modifying several attributes at
the same time and at different abstraction levels achieve, as it has already been
pointed out in the previous section, most musically or end-user meaningful trans-
formations.

Higher-level transformations can refer to aspects like sound character, articula-

426 10 Spectral Processing

tion or expressive phrasing. These ideas lead to the development of front ends such
as graphical interfaces or knowledge-based systems [Arc97, Arc98] that are able to
deal with the complexity of this sound representation.

In this section we introduce two applications that have been developed with
these ideas in mind: a singing voice conversion and a time scaling module.

10.5.1 Real-Time Singing Voice Conversion

Here we present a very particular case of audio morphing. We want to morph, in
real-time, two singing voice signals in such a way that we can control the resulting
synthetic voice by mixing some characteristics of the two sources. Whenever this
control is performed by means of modifying a reference voice signal matching its
individual parameters to another, we can refer to it as voice conversion [Abe88].

In such a context, a karaoke-type application, in which the user can sing like
his/her favorite singers, was developed [Can00]. The result is basically an automatic
impersonating system that allows the user to morph his/her voice attributes (such
as pitch, timbre, vibrato and articulations) with the ones from a pre-recorded singer,
which from now on we will refer to as target.

In this particular implementation, the target’s performance of the complete song
to be morphed is recorded and analyzed beforehand. In order to incorporate the
corresponding characteristics of the target’s voice to the user’s voice, the system first
recognizes what the user is singing (phonemes and notes), looks for the same sounds
in the target performance (i.e. synchronizing the sounds), interpolates the selected
voice attributes, and synthesizes the morphed output voice. All this is accomplished
in real-time.

Figure 10.23 shows the general block diagram of the voice impersonator system.
The system relies on two main techniques that define and constrict the architec-
ture: the SMS framework (see 10.2.2) and a Hidden Markov Model based Speech
Recognizer (SR). The SMS implementation is responsible for providing a suitable
parameterization of the singing voice in order to perform the morph in a flexible and
musically-meaningful way. On the other hand, the SR is responsible for matching
the singing voice of the user with the target.

Let’s take an overview of the whole process. Before we can morph a particular
song, we have to supply information about the song to be morphed and the song
recording itself (Target Information and Song Information). The system requires
the phonetic transcription of the lyrics, the melody as MIDI data, and the actual
recording to be used as the target audio data. Thus, a good impersonator of the
singer that originally sang the song has to be recorded. This recording has to be an-
alyzed with SMS, segmented into morphing units (phonemes), and each unit labeled
with the appropriate note and phonetic information of the song. This preparation
stage is done semi-automatically, using a non-real time application developed for
this task.

Once we have all the required inputs set we can start processing the user’s
voice. The first module of the running system includes the real-time analysis and

10.5 Content Dependent Processing 427

Useﬁ%
-~

SMS-Analysis

iy

Morph & Synthesis

| Mo) gyminess

Target Information

Song Information

Voice
output

Alignment Analysis

|

Analysis & Alignment

Figure 10.23 System block diagram.

the recognition/alignment steps. Each analysis frame, with the appropriate param-
eterization, is associated with the phoneme of a specific moment of the song and
thus with a target frame. Once a user frame is matched with a target frame, we
morph them by interpolating data from both frames and we synthesize the output
sound. Only voiced phonemes are morphed and the user has control over which
parameters are interpolated, and by how much. The frames belonging to unvoiced
phonemes are left untouched, thus always having the user’s unvoiced consonants in
the output.

Several modifications are done to the basic SMS procedures to adapt them to the
requirements of the impersonator system. The major changes include the real-time
implementation of the whole analysis/synthesis process with a processing latency
of less than 30 milliseconds and the tuning of all parameters to the particular
case of the singing voice. These modifications include the extraction of higher-level
parameters meaningful in the case of the singing voice and that will be later used
in the morphing process.

The system includes an Automatic Speech Recognizer (ASR) based on phoneme-
base discrete HMM’s in order to solve the matching problem. This ASR has been
adapted to handle musical information and works with very low delay [Los99] since
we cannot wait for a phoneme to be finished before it is recognized, moreover,
we have to assign a phoneme to each frame. This would be a rather impossi-
ble/impractical situation if it was not for the fact that the lyrics of the song are
known beforehand. This reduces a big portion of the search problem: all the possible
paths are restricted to just one string of phonemes, with several possible pronun-
ciations. The problem is cut down to the question of locating the phoneme in the
lyrics and positioning the start and end points.

Besides knowing the lyrics, musical information is also available. The user is
singing along with the music, and hopefully according to a tempo and melody

428 10 Spectral Processing

already specified in the score. Thus, we also know the time at which a phoneme is
supposed to be sung, its approximate duration, its associated pitch, etc. All this
information is used to improve the performance of the recognizer and also to allow
resynchronization, for example in the case of a singer skipping a part of the song.

Depending on the phoneme the user is singing, a unit from the target is se-
lected. Each frame from the user is morphed with a different frame from the target,
advancing sequentially in time. Then the user has the choice of interpolating the
different parameters extracted at the analysis stage, such as amplitude, fundamen-
tal frequency, spectral shape, residual signal, etc. In general, the amplitude will not
be interpolated, thus always using the amplitude from the user and the unvoiced
phonemes will not be morphed either, thus always using the consonants from the
user. This will give the user the feeling of being in control. This recognition and
matching process is illustrated in Fig. 10.24.

W

oF
/

user

DA

Figure 10.24 Recognition and matching of morphable units.

Whenever the spectral shape is interpolated, and the morph factor is set around
50%, the resulting spectral shape is smoothed and looses much of its timbre charac-
teristic. This problem can be solved if formants are included in the spectral shape
model and they are taken into account in the interpolation step.

In most cases, the durations of the user and target phonemes to be morphed will
be different. If a given user’s phoneme is shorter than the one from the target, the
system will simply skip the remaining part of the target phoneme and go directly
to the articulation portion. In the case when the user sings a longer phoneme than
the one present in the target data, the system enters in the loop mode. Each voiced
phoneme of the target has a loop point frame, marked in the pre-processing, non-
real time stage. The system uses this frame for loop-synthesis in case the user sings
beyond that point in the phoneme. Once we reach this frame in the target, the rest
of the frames of the user will be interpolated with that same frame until the user
ends the phoneme. This process is illustrated in Fig. 10.25.

The frame used as a loop frame requires a good spectral shape and, if possible,
a pitch very close to the note that corresponds to that phoneme. Since we keep

10.5 Content Dependent Processing 429

Selected frame
for looping

,attack steady ﬂ‘ release

Normal morphing Loop-mode morphin(j\\

1]

Spectral shape of target’s frame
Amplitude of each user’s frame
Pitch of target’s frame + delta pitch from table

~| User

Figure 10.25 Loop synthesis diagram.

a constant spectral shape, we have to do something to make the synthesis sound
natural. The way we do it is by using some “natural” templates obtained from the
analysis of a longer phoneme that are then used to generate more target frames to
morph with the loop frame. For example, one feature that adds naturalness is pitch
variations of a steady state note sung by the same target. These delta pitches are
kept in a lookup table whose first access is random and consecutive values are read
afterwards. Two tables are kept, one with variations of steady pitch and another
one with vibrato to generate target frames.

Once all the chosen parameters have been interpolated in a given frame, they
are added back to the basic synthesis frame of the user. The synthesis is done with
the standard synthesis procedures of SMS.

10.5.2 Time Scaling

Time-scaling an audio signal means changing the length of the sound without affect-
ing other perceptual features, such as pitch or timbre. Many different techniques,
both in time and frequency domain, have been proposed to implement this effect.
Some frequency domain techniques yield high-quality results and can work with
large scaling factors. However, they are bound to present some artifacts, like phasi-
ness, loss of attack sharpness and loss of stereo image. In this section we will present
a frequency domain technique for near loss-less time-scale modification of a general
musical stereo mix [Bon00].

The basic system

The general block diagram of the system is represented in Fig. 10.26. First, the input
sound is windowed and applied to the FFT which gives the analysis frame AF,,

430 10 Spectral Processing

that is, the spectrum bins and the amplitude and phase envelopes (n is the analysis
frame index). Then the time scaling module generates the synthesis frame SF,
that is fed to the inverse FFT (IFFT, m is the synthesis frame index). Finally, the
windowing & overlap-add block divides the sound segment by the analysis window
and multiplies it by the overlap-add window, to reconstruct the output sound. The
basics of the FFT/IFFT approach are detailed in chapter 8.

) Windowing
inputo—| A | FFT] TMe | 0 ferr L & |—ooutput

Scali
AF, caling SF,, Overlap

Figure 10.26 General diagram.

It is important to remark that the frame rate used in both the analysis and
synthesis modules is the same, as opposed to the most broadly used time scaling
techniques in which a change of frame rate in synthesis is used in order to achieve
the effect. The window size and type must also be the same in both processes.

Figure 10.27 illustrates the operations for a time-scale stretching factor 'S > 1,
and a time compression factor 7'S < 1. The horizontal axis corresponds to the
time of the center of the frame in the input audio signal. Therefore, when T'S >
1, the time increments relative to the input audio signal will be shorter in the
synthesis than in the analysis frames, but the actual frame rate will be exactly the
same. Each synthesis frame points to the nearest look-ahead analysis frame. In some

Analysis

frames Used twice!
=

A

Synthesis‘
frames

Analysis
frames Not used!

AR

Synthesis1
frames

Figure 10.27 Analysis and synthesis frames.

cases, as shown in Fig. 10.27, an analysis frame is used twice (or more) while in
other cases some frames are never used. This technique will not add any artifacts,
provided the frame size we use is small enough and the sound does not present
abrupt changes in that particular region. In the case of a percussive attack, though,
a frame repetition or omission can be noticed regardless of the analysis frame size.
Therefore, some knowledge of the features of a sound segment is needed to decide
where this technique can or cannot be applied.

Figure 10.28 shows a detailed block diagram of the time scaling module. The
analysis frames AF),, containing the spectrum amplitude and phase envelopes, are

10.5 Content Dependent Processing 431

fed to the time-scaling module. This module performs a peak detection and a peak
continuation algorithm (see 10.3.1) on the current and previous z~! amplitude en-
velopes. Then, only the peaks that belong to a sinusoidal track are used as inputs
to the spectrum phase generation module. Note that the time scaling module only
changes the phase, leaving the spectral amplitude envelope as it is.

Phase Spectrum

Phase > Phase
Generation

AF,
z Detection
Continuation
Amplitude — Desgstli(on

Amplitude

Figure 10.28 The time scaling module.

The phase of each peak is computed supposing that the frequency varies linearly
between two consecutive frames and that there is some phase deviation Agp (see
Fig. 10.29). The usage of the same frame rate in analysis and synthesis allows us to
suppose that the phase variation between two consecutive frames is also the same.

n=Analysis frame index
m=Synthesis frame index

2 '3

fHf
fopogres On, 4 gy of! 20 = O+

,,,,,,,, f'z
fo—>pF" @
fi+fy
fOL\A " DSFm,M DmSFm-LMD 20 ———+D
0

AF,4 AF,

Figure 10.29 Peak continuation and phase generation.

Common problems and solutions in time-scaling

Chapter 8 already introduced a spectral technique for time scaling based on the
phase vocoder approach. This kind of implementation presents very well known
artifacts. In this section we will describe some of these problems and the solution
that the implementation we are proposing can provide.

432 10 Spectral Processing

- Phasiness

In the phase vocoder implementation, the original frame has a flat phase envelope
around the peak because of the circular convolution of the analysis window with
the sinusoid. But after time scaling is applied, the phase looses its original behavior.
This artifact is introduced due to the fact that the phase of each bin advances at
different speed (see section 8.4.3). This loss of peak’s phase coherence is known
as phasiness. To avoid this problem we can apply the original relative behavior
of the phase around the peak. As pointed out in [Lar97], each peak subdivides
the spectrum into a different region, with a phase related to that of the peak. The
phase around each peak is obtained applying the delta phase function of the original
spectrum phase envelope (see Fig. 10.30).

Amplitude f, Amplitude 4
/\/gz\/ /\/ﬁ;\v
—— — ¥
Phase Phase f+fy
- 2 -~
e, LN -~ -
e 1 < ’ODAFn, 2 ey, s ﬁSFm’ f2
_ _ RN .
AF, SFm

Figure 10.30 Original delta phase function around each peak.

- Loss of attack transients

Another typical artifact of the phase vocoder approach is the smoothing of the
attack transients. A possible solution is to modify the sinusoidal plus residual model
in order to model these transients [Ver98]. Another possible approach is not to time-
scale the input signal on this kind of regions so that the original timing is respected
(see Fig. 10.31). Consequently, and in order to preserve the overall scaling factor, a
greater amount of scaling should be applied to surrounding regions.

FAST CHANGING REGION

A

Fn

—, oo
Analysis frames 1 P > w—i—f—>
/ / !
/ /! i
| / i
| / i

é é :

Synthesis frames ° °
SF,
Closest synthesis frame to AF,

Figure 10.31 Attack transient region.

In order to apply the previous technique, it is necessary to detect attack tran-
sients of the sound in an unsupervised manner. The computation of relative changes
of energy along several frequency bands can be used for that purpose. A low fre-

10.5 Content Dependent Processing 433

quency band could, for example, detect sharp bass notes, while a high frequency
band could be set to detect hits of a crash cymbal.

The spectrum of the input signal is given by
X (sRa, k) = | X (sRa, k)| - e7¢(5Fa:k) (10.23)

where the FFT has been sampled every R, samples in time, and s is the time index
of the short-term transform. If we define a set of frequency bands B;(k), then the
energy of the it" band can be computed as

N-1
E(s,i) = Y _ Bi(k)- X*(sRq, k) (10.24)

=0
and the relative change of energy C(s,i) at frame s as,

C(s.i) = —2E(s —2,i) — E(s — 1};‘2:2;5(3 +1,i) +2E(s + 2,1')_ (10.25)

The maxima of C(s,i) over some threshold should then indicate the attack tran-
sients of the input signal at the desired band.

- Frequency versus time resolution

As explained in 10.3.1, it is desirable to have long windows in order to achieve a high
frequency resolution, but also to have short windows so to achieve a better time
resolution. If the audio signal presents an important low frequency component, the
use of a long window is a must, because the low frequency peaks will be too close to
be distinguishable if we use a short window. On the other hand if we apply a very
long window, the time-scaling process will add reverb and will smooth the sound.

The solution proposed is to use parallel windowing, that is, several analysis
channels (see Fig. 10.32). Each channel is the result of an FFT with a specific window
size, window type and zero-padding. Obviously, the window should be longer for
low frequencies than for high frequencies. The peak detection process is applied to
each of the channels while the peak continuation takes care of the desired channel
frequency cuts, so it can connect peaks of different channels. Then the time scaling
module fills the spectrum of all the channels (amplitude and phase envelopes) and
applies a set of parallel filters Hy(f) that must add up to a constant (allpass filter).

If the cutoff frequency of a channel was close to a spectral peak, this would be
broken apart into two different channels and we would be introducing some kind
of artifacts. For that reason, and in order to guarantee that phase and amplitude
envelopes around the peak behave the way we expect, we need to provide our system
with time-varying frequency cuts. Each frequency cut is computed as the middle
point between the two closest peaks to the original frequency cut (see Fig. 10.33).

434 10 Spectral Processing

— A_ | FFT » Hy(f) | IFFT —» Wind&Ov
AF,Ch,4 SFmChy
Input 1| N B FFT) » Hy(f) —»| IFFT —» Wind&Ov Output
o4 AFCh,| _Time |SF ch,
Scaling
sl A_ | FFT » H(f) | IFFT > Wind&Ov
AF.Chy SFmChg

Figure 10.32 Multiple parallel windowing.

Synthesis Frame m-1 Synthesis Frame m

Amplitude Amplitude
[fi fi
/c\/fi\/ /\/12\,\,
Fre «l—n— Fre
fi+f a fi+fp 4
2 \ 2 \

Desired Desired

Used frequency Used frequency
frequency cut frequency cut
cut cut

Figure 10.33 Variable phase frequency cut.

- Loss of stereo image

In the case of stereo signals, if we process each one of the channels independently,
most of the stereo image is bound to be lost. This artifact is mainly due to the
fact that the time scaling process changes the phase relationship between the two
channels. Therefore, if we want to keep the stereo image, it is necessary to preserve
the phase and amplitude relationship between left and right channels.

The fact that the system does not change the amplitude envelope of the spec-
trum guarantees that the amplitude relationship between channels will be preserved,
provided we always use frames with identical time tags for both channels. For that
purpose, we need to synchronize the attack transients between the two channels.

Figure 10.34 shows the simplified block diagram of the stereo time scaling sys-

tem. Notice that the number of FFT and IFFT operations is multiplied by two and,
as a consequence, the same happens to the processing time.

Time-varying time scaling

The system presented can deal with time-varying scaling factors with no loss of
quality tradeoff. The only significant change is that the time increments of the
synthesis frames in the input signal are not constant.

The application of time-varying tempo variations opens up many new and inter-
esting perspectives. The system could be easily adapted and used for alignment and

10.6 Conclusion 435

Windowing

oo /. FFT IFFT " & ot
p ALF, SLF,, Overlap p

Time

Scaling
) Windowing .
-F;'ghtto—> A FFT IFFT & —oo':i'?r:}t
inpu ARF, SRF, Overlap P

Figure 10.34 Stereo time scaling.

synchronization of two sound sources. Also, the amount of time scaling could be
used in a wise way to inspire emotions. For example, to increase the climax or the
suspense of a musical piece, by slowing or increasing the tempo during certain frag-
ments. Another interesting application could be to control the time scaling factor
in the same way as the orchestra conductor does and play in real-time a previously
recorded background with a live performance.

10.6 Conclusion

Throughout this chapter, we have shown how the use of higher-level spectral models
can lead to new and interesting sound effects and transformations. We have also
seen that it is not easy nor immediate to get a good spectral representation of a
sound, so the usage of this kind of approach needs to be carefully considered bearing
in mind the application and the type of sounds we want to process.

For example, most of the techniques presented here work well only on mono-
phonic sounds and some rely on the pseudo-harmonicity of the input signal.

Nevertheless, the use of spectral models for musical processing has not been
around too long and it has already proven useful for many applications, as the ones
presented in this chapter. Under many circumstances, higher-level spectral models,
such as the Sinusoidal plus Residual, offer much more flexibility and processing
capabilities than more immediate representations of the sound signal.

In general, higher-level sound representations will offer more flexibility at the
cost of a more complex and time-consuming analysis process. It is important to
remember that the model of the sound we choose will surely have great effect on
the kind of transformations we will be able to achieve and on the complexity and
efficiency of our implementation. Hopefully, the reading of this chapter, and the
book as a whole, will guide the reader towards making the right decisions in order
to get the desired results.

Bibliography

[Abe88] M. Abe, S. Nakamura, K. Shikano and H. Kuwabara, Voice Conversion
through Vector Quantization. Proc. ICASSP-1988, pp. 655-658, 1988.

436

[Arc97]

[Arc98]

[Bon00]

[Can98]

[Can00]

[Chi94]

[CoxT1]

[Dep93]

[Dep97]

[Din97]

[Fit00]

[G0096]

[G0097]

10 Spectral Processing

J.L. Arcos, R. Lépez de Mantaras and X. Serra. Saxex: a Case-Based
Reasoning System for Generating Expressive Musical Performances. Proc.
International Computer Music Conference, pp. 25-30, 1997.

J.L. Arcos, R. Lopez de Méntaras and X. Serra. Saxex: a Case-Based Rea-
soning System for Generating Expressive Musical Performances. Journal
of New Music Research, Vol. 27, No. 3, pp. 194-210, Sept. 1998.

J. Bonada. Automatic technique in frequency domain for near-lossless
time-scale modification of audio. Proc. International Computer Music
Conference, pp. 396-399, 2000.

P. Cano. Fundamental Frequency Estimation in the SMS Analysis. Proc.
Digital Audio Effects Workshop (DAFX98), Barcelona, pp. 99-102, Novem-
ber 1998.

P. Cano, A. Loscos, J. Bonada, M. de Boer and X. Serra. Voice Morphing
System for Impersonating in Karaoke Applications. Proc. International
Computer Music Conference, pp. 109-112, 2000.

D.G. Childers. Measuring and Modeling Vocal Source-Tract Interaction.
IEEFE Transactions on Biomedical Engineering, Vol. 41, No. 7, pp. 663-671,
July 1994.

M.G. Cox. An algorithm for approximating convex functions by means of
first-degree splines. Computer Journal, Vol. 14, pp. 272-275, 1971.

Ph. Depalle, G. Garcia and X. Rodet. Analysis of Sound for Additive
Synthesis: Tracking of Partials Using Hidden Markov Models. Proc. In-
ternational Computer Music Conference, pp. 94-97, 1993.

Ph. Depalle and T. Hélie. Estraction of Spectral Peak Parameters using a
Short-Time Fourier Transform Modeling and no Sidelobe Windows. Pro-
ceedings of the 1997 IEEE Workshop on Applications of Signal Processing
to Audio and Acoustics, Monhonk, pp. 298-231, 1997.

Y. Ding and X. Qian. Sinusoidal and Residual Decomposition and Resid-
ual Modeling of Musical Tones Using the QUASAR Signal Model. Proc.
International Computer Music Conference, pp. 35-42, 1997.

K. Fitz, L. Haken and P. Christensen. A New Algorithm for Bandwidth
Association in Bandwidth-Enhanced Additive Sound Modeling. Proc. In-
ternational Computer Music Conference, pp. 384-387, 2000.

M. Goodwin. Residual Modeling in Music Analysis-Synthesis. Proc. IEEE
ICASSP-1996, pp. 1005-1008, Atlanta, 1996.

M. Goodwin. Adaptative Signal Models: Theory, Algorithms and Audio
Applications. Ph.D. Dissertation, University of California. Berkeley, 1997.

Bibliography 437

[Har78]

[Her98]

[Hes83]

[Lar97]

[Los99]

[Mah94]

[Mak75]

[Mar75]

[McAS86]

[Osa95]

[Rod92]

[Ros98]

[Sed88]

[Ser89]

[Ser90]

F.J. Harris. On the use of windows for harmonic analysis with the discrete
Fourier transform. Proceedings IEEFE, Vol. 66, pp. 51-83, 1978.

P. Herrera and J.Bonada. Vibrato Extraction and Parameterization in
the Spectral Modeling Synthesis Framework. Proc. Digital Audio Effects
Workshop (DAFX98), pp. 107-110, Barcelona, November 1998.

W. Hess. Pitch Determination of Speech Signals. New York, Springer-
Verlag, 1983.

J. Laroche and M. Dolson. About this phasiness business. Proc. Interna-
tional Computer Music Conference, pp. 55-58, 1997.

A. Loscos, P. Cano and J. Bonada. Low-delay Singing Voice Alignment to
Text. Proc. International Computer Music Conference, pp. 437-440, 1999.

R.C. Maher and J.W. Beauchamp. Fundamental Frequency Estimation
of Musical Signals using a two-way Mismatch Procedure. Journal of the
Acoustical Society of America, 95(4):2254-2263, 1994.

J. Makhoul. Linear Prediction: A Tutorial Review. Proceedings of the
IEEE, Vol. 63, No. 4, pp. 561-580, 1975.

J.D. Markel and A.H. Gray. Linear Prediction of Speech. Springer-Verlag,
1975.

R.J. McAulay and T.F. Quatieri. Speech Analysis/Synthesis based on a
Sinusoidal Representation. IEEE Transactions on Acoustics, Speech and
Signal Processing, 34(4):744-754, 1986.

N. Osaka. Timbre Interpolation of sounds using a sinusoidal model. Proc.
International Computer Music Conference, pp. 408-411, 1995.

X. Rodet and Ph. Depalle. Spectral Envelopes and Inverse FFT Synthesis.
Proc. 93rd AES Convention. San Francisco, AES Preprint No. 3393 (H-3),
October 1992.

S. Rossignol and others. Feature Extraction and Temporal Segmentation of
Acoustic Signals. Proc. International Computer Music Conference, 1998.

R. Sedgewick. Algorithms. Reading, Massachusetts: Addison-Wesley, 1988.

X. Serra. A System for Sound Analysis/Transformation/Synthesis based
on a Deterministic plus Stochastic Decomposition. Ph.D. Dissertation,
Stanford University, 1989.

X. Serra and J. Smith. Spectral Modeling Synthesis: A Sound Analy-
sis/Synthesis System based on a Deterministic plus Stochastic Decompo-
sition. Computer Music Journal, Vol. 14, No. 4, pp. 12-24, 1990.

438

[Ser94]

[Ser96]

[Ser98]

[S1a96]

[Smi87]

[SMS]
[Str80]

[Tel95]

[Ver98]

[Ver00]

[Vid90]

10 Spectral Processing

X. Serra. Sound Hybridization Techniques based on a Deterministic plus
Stochastic Decomposition Model. Proc. International Computer Music
Conference, pp. 348-351, 1994.

X. Serra. Musical Sound Modeling with Sinusoids plus Noise. in G. D. Poli,
A. Picialli, S. T. Pope, and C. Roads, editors, Musical Signal Processing.
pp. 91-122, Swets & Zeitlinger Publishers, 1996.

X. Serra and J. Bonada. Sound Transformations Based on the SMS
High Level Attributes. Proc. Digital Audio Effects Workshop (DAFX98),
pp- 138-142, Barcelona, November 1998.

M. Slaney, M. Covell and B. Lassiter. Automatic audio morphing. Proc.
IEEE ICASSP-1996, pp. 1001-1004, 1996.

J.O. Smith and X. Serra. PARSHL: An Analysis/Synthesis Program for
Non-Harmonic Sounds based on a Sinusoidal Representation. Proc. Inter-
national Computer Music Conference, pp. 290-297, 1987.

www.iua.upf.es/ sms

J. Strawn. Approximation and Syntactic Analysis of Amplitude and Fre-
quency Functions for Digital Sound Synthesis. Computer Music Journal,
4(3):3-24, 1980.

E. Tellman, L. Haken and B. Holloway. Timbre morphing of sounds with
unequal numbers of features. Journal of the Audio Engineering Society,
43(9), 678-89, 1995.

T.S. Verma and T.H.Y. Meng. Time Scale Modification Using a
Sines+Transients+Noise Signal Model. Proc. Digital Audio Effects Work-
shop (DAFX98), pp. 49-52, Barcelona, November 1998.

T.S. Verma and T.H.Y. Meng. Extending Spectral Modeling Synthesis
With Transient Modeling Synthesis. Computer Music Journal, 24:2, pp.47-
59, 2000.

E. Vidal and A. Marzal. A Review and New Approaches for Automatic
Segmentation of Speech Signals. L. Torres and others (eds.), Signal Pro-
cessing V: Theories and Applications, pp. 43-53, Elsevier Science Publish-
ers, 1990.

