
METRIX: A Musical Data Definition Language and Data
Structure for a Spectral Modeling Based Synthesizer

Xavier Amatriain, Jordi Bonada, Xavier Serra

Audiovisual Institute, Pompeu Fabra University
Rambla 31, 08002 Barcelona, Spain

 {xamat,jboni,xserra}@iua.upf.es http://www.iua.upf.es

[Published in the Proceedings of the Digital Audio Effects Workshop (DAFX98), 1998]
Abstract

Since the MIDI 1.0 specification [1], well over 15 years ago, many have been the attempts to give
a solution to all the limitations that soon became clear. None of these have had a happy ending,
mainly due to commercial interests and as a result, when trying to find an appropriate synthesis
control user interface, we had not many choices but the use of MIDI. That’s the reason why the
idea of defining a new user interface aroused. In this article, the main components of this interface
will be discussed, paying special attention to the advantages and new features it reports to the end-
user.

1 Introduction

A lot has been written about the problems in MIDI:
speed, channels, program numbers, modes, stuck
notes...

The new proposals which are more likely to be
accepted by the synthesizer industry are those which
not only keep compatibility but also are just
extensions of MIDI such as X-MIDI [2] or Fuzzy-
MIDI [3]. These possible standards offer different
improvements to MIDI limitations but don't face the
problem for which MIDI doesn't seem a long-term
supportable standard : keyboardism.

The basics of MIDI start tumbling when it comes to
controlling a string synthesizer, which can have two
strings playing the same note but sounding different,
or a wind synthesizer, which can have continuos
controls such as lip pressure or frequency.

The solutions given to this problem start by being
able to control not only key numbers, instruments or
channels. Some proposals such as Open Sound
Control [4], Synth Control [5] or SKINI [6] offer the
possibility of controlling any kind of synthesis events
by giving them their own address or ID number.

A more complete solution was given by ZIPI [7]. In
ZIPI, an instrument was described as a set of notes
which could be addressed and modified
independently. This concept is similar to the one we
have named generator, the minimum unity within an
instrument which is capable of producing a sound by
itself (a string, a key, a drum...). Needless to say that
this idea of generator has little to do with the idea of
synthesis generator used by some protocols as the
Soundfont 2.0 [8].

The whole system, is a transport-independent
protocol, and although it was not designed with a
particular transport layer in mind, features shared by
modern networking technologies are assumed.
Therefore, the design is not preoccupied with
reducing musical information to the minimum.

2 General Concepts

The interface is made up of a Musical Score
Description Language (MSDL), an SMS [9]
Instrument Definition Language (SMSIDL) and a set
o C++ classes which together with other more general
purpose classes conform the SMS Class Structure
(SMSCS)[10]. The MSDL is intended to be general
purpose and might be useful to other synthesis
techniques while the SMSIDL and the SMSCS are
based on our particular needs. The distinction of an
Instrument File from the Score File has already been
used in synthesis control system being the most
renamed Csound [11].

The goal of the complete interface is to offer an easy-
to-use but yet flexible tool to control all the different
aspects involved in digital instrument synthesis. In
the following sections I will give a brief description
of its main components.

3 The Spectral Modeling Synthesis
Class Structure

In this section, only the classes in the SMSCS that are
more related and have indeed been developed for this
layer are discussed.

Up to this moment, no compatibility has been
intended with MPEG-4's Structured Audio

Specifications (SAOL) [12] although the main
guidelines have been observed.

2.1 The Synthesis Controller Class

This is, in fact, the class responsible for controlling
all the different aspects involved in the synthesizer.
Its first commitment is to read the information
contained in the Instrument File and in the header of
the Score File initializing all instruments and global
variables that will later be involved in the synthesis
process.

Then, it starts and keeps control of the Synthesis
Loop in which it receives new events from the Score
File and controls the Generators active at that
moment. The Synthesis Controller keeps trace of
active Generators and Instruments.

2.2 The Instrument Class

The Instrument Class contains all the information
read from the Instrument File.

One of the main features in the Instrument Class is
the Timbre Space. Although the name and concept
has been taken from previous works [13] its purpose
and implementation is completely different. The
Timbre Space is an n-dimensional virtual space
formed by the positioning of the different SMS Data
Tracks in a specific location. The class knows how to
obtain the appropriate Track Frames by interpolating
the already loaded information. See section 4.2 for
more information on the Timbre Space.

2.3 The Generator Class

As mentioned in section 1, a Generator is the
minimum unity within an instrument capable of
producing a sound by itself, and that is the reason
why the Generator Class has pointers to all the SMS

global Synthesis Classes necessary and sufficient to
fill a synthesis buffer by themselves.

Each Generator has also a pointer to the Instrument
Class in order to obtain all the information loaded
from the Instrument File and that affects that
Generator.

Another important feature contained in each
generator is a pointer to a Synthesis Parameters Class.
This is a special class that keeps trace of all the
different synthesis parameters (low and high-level)
and their value at any time.

2.4 The Score File Class

The Score File Class is the class responsible for
reading the information stored in a standard text file

according to the MSDL general rules. The class reads
all the information contained in the Header as well as
all the events when its member function Load is
called.

When the Synthesis Controller Class initializes all
instruments and generators, it asks for the
information loaded from the Header of the score file.
Then, in the synthesis loop it keeps asking for the
events with a time tag included within the current
synthesis period until the Score File Class recognizes
the end of the file being read. It is clear that this kind
of working is fully compatible with the real-time idea
of reading events stored in a buffer since the last call
from the Synthesis Controller.

2.5 The Instrument File Class

This class is responsible for reading all the
information contained in a standard text file
according to the SMSIDL. After reading, all the
information is loaded in a special structure accessible

 Sound

 Score File Instrument File

Figure 1. Class Structure.

Synth Controller

Class

Instrument Class

Generator Class

Instrument File

Class

Score File

Class

General
Synthesis and
Sound Classes

from the Instrument when the Synthesis Controller
asks for its initialization.

3 The Spectral Modeling Synthesis
Instrument Definition Language

No low-level bit structured messages are involved in
defining an Instrument File with the SMSIDL. A set
of reserved words are defined which combined,
following an easy syntax, conform the messages in an
Instrument Definition File. An SMSIDL File can be a
standard ASCII text file and be modified with any
word processor or either any kind of real-time stream.

The Instrument File is divided into four different
parts that conform the complete definition of an SMS
based Instrument, that is: definition of Instrument
Generators, Instrument Timbre Space, Time and
Parameter Envelopes and SMS and Control
Parameters. All of them will be introduced in the
following sections. A simple example is given in
section 4.5.

It should be pointed that the order of these parts in the
Instrument File is indeed critical and must follow the
one here introduced. Otherwise, references to not
previously introduced information, will not be solved.

2.6 Generators

In this part of the Instrument File, a unique name and
integer identification number must be given to each
generator.

The identification number will be used in the other
parts of the Instrument File in order to access the
different generators. The name will be accessed later
from the Score File.

2.7 Timbre Space

The idea of a Timbre Space was already introduced in
section 2. The definition of a Timbre Space with the
SMSIDL consists in the definition of three different
aspects.

First, the number of dimensions to be used. The
instrument designer must decide what features of the
instrument represent a substantial change in the sound
that cannot be achieved using the different
transformations available. These dimensions such as
loudness, pitch, articulation, etc... must have the
correspondent SMS data extracted from a previous
analysis of those features in the instrument. A
compromise between sound quality and amount of
synthesizer memory used must be adopted.
Next, the kind of Interpolation to use between the
Data stored. A set of standard interpolation types are
available.

Finally, the positioning of each SMS data in a
concrete location in the space.

The Instrument Class will be capable of solving
intermediate positions by the interpolation of the
SMS data loaded from the files.

E.g. A good quality piano sound can be obtained by
storing the SMS Data from just eight of the piano
keys (A0 thru A7) and obtaining the rest by
interpolation. Thus, only one dimension is used
(pitch). Other features such as loudness can be
obtained by applying different transformations on the
data available.[14]

2.8 Envelopes

Two kind of envelopes are available: Time Envelopes
and Parameter Envelopes. An envelope is defined by
giving a name, an interpolation type and any number
of envelope points from which the others will be
computed.

A Time Envelope is a user defined function that
returns a single value according to the relative time
elapsed since the beginning of an event.

Unlike Time Envelopes, Parameter Envelopes return
a complete envelope that will be applied to the
parameter involved according to its definition.

2.9 Parameters

In this part, SMS and Control Parameters are
initialized. Other parameters, will not be accessible
from the Score File.

To initialize an SMS Parameter, only its maximum,
minimum, and default value are specified.

Besides that, when initializing a Control Parameter,
the instrument designer must define the relationship
between that parameter and the set of SMS
Parameters or the Timbre Space location. A single
Control Parameter can have any number of low-level
references. Any kind of standard formulas or
Envelopes previously defined in section 4.3 may be
used in this field. An standard set of Control
Parameters is available but the list is still not
complete as it depends on each kind of instrument to
define and the musicians gestures to describe.

2.10 Example

In the following example, a simple SMS based piano
synthesizer is implemented [14]. Only one dimension
of the timbre space is used and the number of SMS
and Control parameters used have been reduced to
the minimum to keep the example simple. A more
complete explanation is given at [10].

The reserved characters '#' and '@' mean the value of
the parameter and the number of the generator
involved respectively.

Generators :{
 "Name[0-85],Key" }
SMSTimbreSpace :{
 "nCoord,1"
 "IntType,PianoPitch "
 "c:\Metrix\Piano\A0.sms,0 "
 "c:\Metrix\Piano\A1.sms,0.1412 "
 "c:\Metrix\Piano\A2.sms,0.2824 "
 "c:\Metrix\Piano\A3.sms,0.4235 "
 "c:\Metrix\Piano\A4.sms,0.5765 "
 "c:\Metrix\Piano\A5.sms,0.7176 "
 "c:\Metrix\Piano\A6.sms,0.8588 "
 "c:\Metrix\Piano\A7.sms,1 " }
ParamEnvelopes :{
 "PianoLPF,Linear, (0,1)(0.5,0.39*# +0.5)(1,0.00006*# ^2)" }
TimeEnvelopes :{
 "FadeOut,Linear,(0,1)(T,1)(T+0.3,0.1)(T+0.6,0)" }
SMSParams :{
 "Amp,0,0.2,0.1"
 "AmpSine,0,1,1"
 "AmpSpec,0,1,1" }
ControlParams :{
 "KeyVelocity,0,127,64,
 [Amp,#/127*0.2*TimeEnvelope(FadeOut)]
 [AmpSine,ParamEnvelope(PianoProva)]
 [AmpSpec,0.0000506*#^2+0.00145*#]"
 "KeyNumber[@],@,@,@,[TimbreSpace,(@/85)]"

"Pitch[@],28.8316*1.0595^@,27.16*1.0595^@,28*1.0595^@
, [TimbreSpace,(@/85)]" }

end

3 The Musical Score Description
Language

The MSDL is a text-based synthesis control language
which takes part of its features from previously
released languages as the NEXT ScoreFile Language
[15] or SKINI [5]. No low-level packed messages are
involved in defining a Score with the MSDL. With a
quick look at an MSDL Score File any musician can
get a grasp of what is going on. A simple example is
given in section 5.3.

As the Instrument Definition File, a Score can be a
standard ASCII text file and be modified with any
word processor or either any kind of real-time stream.

Although no exact match with the SMSIDL syntax is
meant, similarity and compatibility is intended.

The Score is made up of two different parts, which
will be discussed in the following sections: the
Header and the Body.

2.11 The Score Header

The Score Header is where all the global variables
relative to the score information or to the output

sound are defined. Concepts such as Tempo, Beat,
Output Sound File or Sample Rate must be included
in this part or either will be assumed as default.

Another feature included in the Header is the
definition of all the instruments to be used in the
score. A reference to the Instrument File location
must therefore be included.

And last but not least, all kind of user variables can
be initialized in this part of the Score. The user can
define an unlimited set of variables in order to access
the instruments, generators or even groups of
instruments. Note that if more than one instrument of
the same kind is to be used, its Definition File will
only be loaded once and can then be referenced by
the use of user defined variables such as piano1,
piano2...

2.12 The Score Body

The Body is the part of the Score where the actual
musical information to control a digital instrument is
included. It is made up of a list of events; sorted by
the time they take place in order to keep real-time
compatibility.

An event is a group of words that define a message
sent to the synthesizer controller. The standard event
statement is made up of four statements sorted this
way: T V P:PV, where T is Time Statement, V is
Variable Statement, P is Parameter Statement, and
PV is Parameter Value Statement.

These, together, conform a message that means:
Modify Parameter (P) referring to variable (V)
according to its new value (PV) at the moment
specified (T).

The Time Statement includes features such as the
possibility to use standard time, SMPTE timecode or
musical Beat notation.

Variable statements can refer to user defined
variables or directly to instruments initialized thus
affecting all variables.

There are two levels of indirection, which the user
can access from the Score in order to control an SMS
based instrument. These two levels correspond to the
two kind of parameters that can be used in the
Parameter Statement: the low-level SMS Parameters,
or the high-level Control Parameters. The SMS
Parameters control instrument features such as the
amplitude of the partials and transformations such as
pitch shifting or morphing. There is a complete list of
parameters at [10].

2.13 Example

This example shows the main possibilities of using
the MSDL for controlling a synthesis process. Note
the different kind of instruments used: the first two
have already been defined and included in the
synthesizer standard bank, the next two are loaded
from an Instrument Definition File during run-time,
and the last one is a single SMS File containing any
kind of information accepted by the SMS File Format
[10].

Score_Info{
 Tempo:130/2
 Meter:3/4
 Resolution:24 }
Sound_Info{
 Bits:8 }
Instrument_Info{
 Piano
 guitar
 oboe[InsDef:"c:\score\oboe"]
 violin[InsDef:"c:\mpegscore\violin"]
 clarinet[SMSDef:"c:\SMS\clarinet"]}
Def instrument a=piano
Def instrument c=violin
Def generator nvar=10 c=c.string
Def instrument d=violin
Def generator a1=a.key1
Def generator a2=a.key2
Def instrument n=clarinet

begin

#01:01:02.04 a1 Pitch:C#3 Loudness:mf Duration:t00:00:01
t00 clarinet AmpFn:[0(1)1(0.5)]
t04 piano.key2 Pitch:f2
t04 Score_Info: Tempo:140
t05 a1 Loudness:ffff

end

3 Conclusions

The whole interface is meant to be simple but yet
flexible enough to offer a complete set of classes and
syntax rules that could be enhanced in the future to
observe other features that have not been included in
this first implementation. MIDI and other interfaces
compatibility is also thought to be available in the
near future.

Up to this moment, the program is running as a stand-
alone utility for PC but it will soon be included in a
more general SMS interface.

Definitions of other instruments as well as other score
examples are also on the way. All new features will
be available at [10].

References

[1] MIDI Manufacturers Association. MIDI 1.0

Detailed Specification. Los Angeles: The
International MIDI Association, 1998.

[2] E. Lukac-Kurac. Extended Midi White Paper.

Meise, Belgium: Digital Design &
Development, 1995. ftp://ftp.cs.ruu.nl/pub/
MIDI/DOC/xmidi.html

 [3] S. Wilkinson. “Fuzzy MIDI (MIDI Spec

Electronic Musician, April 1995.

 [4] M. Wright and A. Freed. “Open SoundControl:

A New Protocol for Communicating with Sound
Synthesizers”. Proc. ICMC, 1997.

[5] M. Wright and A. Freed. The Synth Control

network protocol version 1.0, 1996.
http://cnmat.cnmat.Berkeley.edu/Adrian/
SynthControl.html.

[6] P. Cook. Synthesis toolKit Instrument Network

Interface (SKINI) 0.9 Implementation notes.
Princeton University, 1996.
http://www.cs.princeton.edu/~prc
/SKINI.txt.html

[7] K. Mc Millen. “ZIPI: Origins and Motivations”.

Computer Music Journal 18(4), pp 48-96, 1994.

[8] E-mu System Inc. Soundfont Technical

Specification, Version 2.00a, 1995.

[9] X. Serra and J. Smith. “Spectral Modeling

Synthesis: A Sound Analysis/Synthesis System
based on a Deterministic plus Stochastic
Decomposition”. Computer Music Journal.
14(4). pp12-24, 1990.

[10] Music Technology Group. SMS Homepage.

http://www.iua.upf.es/~sms

[11] B. L. Vercoe. The CSound Manual Version

3.48. A Manual for the Audio Processing System
and supporting program with Tutorials. MIT
Media Laboratory. Edited by Jean Piché,
University of Montreal, 1992.
ftp://ftp.musique.umontreal.ca/pub

[12] Synthetic/Natural Hybrid Coding (SNHC)

section of the MPEG-4. Final Committee Draft
Version 1.8. Document num.FCD ISO/IEC
14496-3 Subpart 5. MIT Media Laboratory,
1997. http://sound.media.mit. edu/mpeg4

[13] D. L. Wessel. “Timbre Space as a Musical

Control Structure”. Computer Music Journal,
2(3), 1979.

[14] J. M. Solà. Disseny i Implementació d'un

sintetitzador de piano. Graduate Thesis.
Polythecnic University of Catalonia, 1997.

 [15] E. Selfridge-Field. Beyond Midi. MIT Press,

1997

