Metamodels and Design Patterns in CSL4

Stephen Travis Pope, Xavier Amatriain, Lance Putnam, Jorge Castellanos, and Ryan Avery
Center for Research in Electronic Art Technology (CREATE)
University of California, Santa Barbara
{stp,xavier } @create.ucsb.edu, {ljputnam,jcastellanos,ravery } @umail.ucsb.edu

Abstract

The task of building a description language for audio synthesis
and processing consists of balancing a variety of conflicting
demands and constraints such as easy learning curve, usabil-
ity, flexibility, extensibility, and run-time performance. There
are many alternatives as to what a modern language for de-
scribing signal processing patches should look like. This pa-
per describes the object-oriented models and design patterns
used in version 4 of the CREATE Signal Library (CSL), a
full rewrite that included an effort to use concepts from the
"4MS” metamodel for multimedia systems, and to integrate
a set of design patterns for signal processing. We refer the
reader to other publications for an introduction to CSL, and

will concentrate on design and implementation choices in CSL4

that simplify the kernel classes, improve their performance,
and ease their extension while using best-practice software
engineering techniques.

1 Introduction

The literature of MusicN-style programming languages
for building signal synthesis “instrument” programs and ex-
ecuting them using note list ’score” files goes back over 50
years (Mathews 1969; Pope 1993), and is still being actively
developed in modern languages such as SuperCollider (Mc-

Cartney 2002), CommonLISPMusic (Schottstaedt 2000), Cmix

(Lanski 1990), J-Syn (Burk 1998), Siren (Pope 2003), Kyma
(Scaletti 1991), and CLAM (Amatriain and Arumi 2005).

The CREATE Signal Library (CSL, pron. “’sizzle”) (Pope
and Ramakrishnan 2003) is a C++ class library for (audio)
signal synthesis, processing, and analysis. It is similar to a
MusicN-style language in that it provides the user with (1)
a set of unit generators that implement most common au-
dio synthesis and processing techniques, (2) a framework for
constructing “instruments” that are signal processing graphs
made up of these unit generators, and (3) supports executing
”scores” with a scheduler, or responding to real-time control
inputs (MIDI, OpenSoundControl, etc.) using an instrument
library or orchestra.

In contrast to the traditional MusicN stand-alone sound
compiler, CSL is packaged as a class library in a general-
purpose programming language (C++). The simplest CSL
program is a 5-line main() function in a simple C program,
and it is intended that CSL can be used in several ways, in-
cluding for the development of stand-alone interactive (MIDI-
or OSC-driven) sound synthesis programs, serving as a plug-
in library for other applications or plug-in hosts, or as a back-
end DSP library for programs written in scripting languages.
CSL is designed from the ground up to be used in distributed
systems, where networks of CSL programs run as servers on a
local-area network, streaming control commands (MIDI and
OSC) and sample buffers (RTP) between them (Pope, Eng-
berg, Holm, and Wolf 2001).

CSL has evolved through several re-writes since 1998;
version 4 (see http://create.ucsb.edu/CSL) was implemented
by graduate students at UCSB in the 2005-6 academic year.

1.1 The 4MS Metamodel

CSL’s design is an instance of the MetaModel for Multi-
Media Systems (4MS) (Amatriain 2005; Amatriain and Pope
2006). 4MS is a metamodel for multimedia systems that can
be instantiated to describe any multimedia processing design,
and that combines the advantages of the object-oriented (OO)
paradigm with system engineering techniques and graphical
models of computation. The 4MS metamodel is based on a
classification of signal processing objects into two primary
categories: Processing objects that operate on data and con-
trol, and Processing Data objects that passively hold media
content. Data input to and output from Processing objects is
done through Ports, and control data is handled through the
Control mechanism.

1.2 Challenges and Goals

Since its first beeps eight years ago, CSL has been driven
by the strongly conflicting design goals of simplicity (it has
been used in teaching audio programming courses since day

one), flexibility (students have wanted to build servers, plug-
ins, and to interface CSL programs with various other APIs),
comprehensiveness (supporting easy extension to any domain
of digital audio signal analysis, synthesis, and processing),
and scalability (enabling multi-server distributed processing
and inter-server control and sample streaming).

For the version 4 rewrite, we were required by the applica-
tions we were building at the time to also address issues such
as processing graphs with varying numbers of channels (and
different spatial models) in the branches, modeling of spa-
tial data control streams and spatialized sources, multi-rate
and variable-rate control input and processing, and distributed
sample stream incorporating multiple transport protocols and
semi-reliable wireless I/O devices.

It is the challenge of facilitating this advanced level of
development with the earlier constraint that the basic descrip-
tion language be as simple as a MusicN-style scripting lan-
guage as possible that motivated the group in the work de-
scribed here. In this paper, we discuss the design issues in
DSP software, and present the motivations for the decisions
behind CSL4’s core model classes, relating them to the 4MS
metamodel and common-practice OO design patterns.

1.3 The CSL Design Aesthetic

Due to the goals and constraints outlined above (espe-
cially with respect to learning curve and flexibility), and to
the fact that this is the fourth re-write of CSL, we have striven
for minimalism in both the design and the implementation of
the system. Our goal is Smalltalk-like simplicity, uniformity,
and comprehensiveness, so we have avoided some design op-
tions that might have made the system faster or more flexi-
ble for advanced users. A secondary goal (also learned from
Smalltalk) is to have all of the system’s operational mech-
anisms exposed to the user and expressed within the same
model.

2 Data and Processing Object Models

A language or API for audio will need to define the ba-
sic data structures for sampled sound and for many kinds of
operations on sound. The choice of the model of sampled
sound buffers or streams will determine the nature of the lan-
guage’s operational semantics or the flavor of the API that
manipulates these sound objects. The standard “procedural-
object” model for audio signal processing evolved form Mu-
sicN languages, where flow charts are often used to visual-
ize signal processing graphs (implying a data-centric object-
oriented model), but description languages often have a dis-
tinct procedural flavor (the “unit generator as subroutine” per-
spective).

The kernel of CSL is a group of abstract classes that map
quite directly onto the 4MS metamodel of Processing, Pro-
cessing Data, and signal or control I/O Ports. In 4MS, appli-
cations consist of networks of processing objects intercon-
nected via control and signal flows. 4MS also introduces
a categorization of multimedia software components; CSL’s
framework hierarchies fall squarely in the Infrastructure and
Platform Abstraction groups, with out-board components for
Visualization and Serialization tasks.

The impact of the metamodel entails not just the class hi-
erarchies, but also the object life-cycles and signal processing
network composite models. In addition to the metamodel’s
architecture, CSL uses a variety of common design patterns
such as Observer, Composite, Adaptor, Singleton, Factory,
Template Method, Visitor, Builder, Proxy, Faade, Decorator,
Strategy, Interpreter, Chain of Responsibility, and Command.
These will be the topic of this paper.

2.1 Model Paradigm and System Architecture

The initial requirements prescribe many aspects of the
overall system architecture (language vs. API vs. app.), and
thus determine much about the basic modeling paradigm used
in the data and processing classes (Arumi, Garcia, and Ama-
triain 2006). How (and by whom) a language or API is to be
used, and into what environment it is to be embedded, are the
design context for synthesis language designers.

Using the CSL classes means writing C++ code that cre-
ates and configures one or more instances of the subclasses of
UnitGenerator, and connects them to some control or schedul-
ing functionality, and to an output object. The signal process-
ing unit generator graph built in a CSL program is usually
activated by regular call-backs from its output object, which
propagate up the graph’s tree according to the prescribed sig-
nal flow.

2.2 Processing Data: Buffers

The requirements for data object models in a digital au-
dio system specify that we provide some object to represent
sampled sound data buffers with a give number of frames
and number of channels, and some place to store sample data
(which could be as simple as a float**). In addition, we would
like the model to support a basic life-cycle (so that we have
the option of implementing buffer and storage management).
According to the 4MS metamodel, Processing Data objects
offer a homogeneous interface to media data, and support for
meta object facilities such as reflection and serialization.

The concrete C++ class csl::Buffer is CSL’s model of multi-
channel sample frame data storage; its instances are passed
between generators and IO objects. Buffer is a “record” class
(or a struct) in that its members are all public and it has no

accessor functions or algorithmic methods. It handles data
buffer allocation and channel maps, and has Boolean mem-
bers that are used in its life-cycle implementation to deter-
mine what its pointer state is. The actual storage vector is
usually of type SampleBufferVector — a vector of (sample *)
buffers, typically floats — and the buffer also holds a times-
tamp and sequence number. Buffer’s design reflects the meta-
model’s ProcessingData class, and it can be extended so that
Buffers can act as Observables (AKA Models or Subjects).
Buffers are used by UnitGenerators and Ports via the Visitor
design pattern.

None of the above discussion limits Buffers to holding
only audio sample data, or fixes what the ”channels” of data in
a Buffer correspond to; in fact Buffers can be used as control
data caches, for 3-D positional data, or as general-purpose
N-by-M matrices as in SDIF (Wright 1999).

It is important to note that the buffer object knows its (ex-
pected) number of channels and frames-per-buffer. This is
used in CSL to tell a unit generator what we expect it to do,
since the argument of the nextBuffer message is a buffer con-
figured by the generators output “client.”

2.3 Processing: Unit Generator Classes

The notion of unit generator as a subroutine comes from
the earliest MusicV documents (Mathews 1969), which in-
cluded an extended discussion of different mechanisms for
block-oriented sample processing. Given a model for the
sample buffer object or stream paradigm, Processing classes
are defined to perform operations on data under the guid-
ance of control values; these may be driven by a scheduler,
by their own threads, or may be passively executed by the
streams themselves, according to the operational semantics
of the language/API orientation. In 4MS, Processing objects
encapsulate a method or algorithm; they include support for
synchronous data processing and asynchronous event-driven
control as well as a configuration mechanism and an explicit
life cycle model.

The core of CSL’s functionality is implemented in the
class hierarchy derived from class csl:: UnitGenerator, akin to
the metamodel’s Processing class. Instances of UnitGenera-
tor subclasses have members for their sample rate and number
of channels, and know their (0, 1, or several) outputs. Most
concrete UnitGenerator subclasses also inherit from some sub-
class of csl::Controllable, which adds the notion of control or
data input ports (see Figure 1 and the section on Ports below).

The main UnitGenerator behavior is the nextBuffer method,
which is overridden in the subclasses to fill or alter the buffer
object passed as the argument. This method normally polls
the unit generator’s control or signal input ports (possibly
sending them the nextBuffer message), and then uses a sample

Controllable

7

[UnitGenerator] [

Phased] [Scalable

K
ImmediateOscillator WavetableOscillator
3 A
[Impulse][Sawtooth H Sine] CompOrCacheOscillator

.\

[WaveShaper] [Bandlimited] [SumOfSines]
K

ImpulseBL TriangleBL

Figure 1: The (partial) class hierarchy of CSL Oscillator
UnitGenerators showing multiple inheritance from UnitGen-
erator, Phased, and Scalable (the last 2 of which are both sub-
classes of Controllable). The concrete subclasses each imple-
ment (at least) a constructor and a nextBuffer method.

computation loop to write data into the buffer object’s storage
vector. Since a buffer knows the number of sample frames it
holds (its X extent), the number of channels it supports (its ¥
extent), and both has a time-stamp and a sequence number,
one can easily build CSL graphs where different components
or sub-graphs run at different frame or block rates, numbers
of channels, or with different amounts of delay or latency.

If more than 1 output port is connected, UnitGenerators
automatically handle fan-out-synchronous (as in loops in a
graph) or asynchronous (as in separate call-back threads or
observers)-with differing buffer sizes or callback rates. Unit-
Generator inherits from Model, meaning that nextBuffer meth-
ods in subclasses are required to send themselves the message
changed(aDataBuffer) so that dependent objects (like signal
views) get a notification when their models compute samples.
This mechanism can also be used for signal flow, or for han-
dling multiple output streams in a graph (e.g., writing an in-
termediate control value or “direct out” to a sound file).

Figure 1 shows a subtree of the CSL UnitGenerator frame-
work centered on the class csl::Oscillator; the multiple super-
classes provide processing template methods and observabil-
ity (UnitGenerator), and special interpretation of several of
the control ports (Scalable and Phased). The Oscillator sub-
classes each implement nextBuffer themselves for their pri-
mary behavioral refinement (i.e., how each subclass oscillates
differently).

2.4 Ports and Control

In simple MusicN languages, connections between unit
generators are handled by variables that are buffers or signals.
In a more comprehensive model, a connection port or outlet
is generally reified to allow unit generators and patch graphs

Controllable
A

I I 1
Effect [Phased ” Scalable I
K K

BinaryOp] [_Oscillator_|

DelayLine

Oscillator

Figure 2: The csl::Controllable hierarchy with its families of
Effects, Phaseds, and Scalables; classes like Panner are both
Effects and Scalables, while Oscillator is both Phased and
Scalable.

themselves to be more easily manipulated.

A Port is used to represent constant, control-rate or audio
signal inputs and outputs to unit generators; the Controllable
mix-in classes (see below) add naming and semantics to the
multiple ports of a unit generator. Each Port holds either a
UnitGenerator and its buffer, or a single floating-point value.
The nextValue() message is used to get the dynamic or static
value. The nextValue() method has no branching or complex
logic and can be compiled in-line for efficiency (since it will
be called several times per sample in a complex UnitGenera-
tor).

UnitGenerators represent their inputs and outputs as named
maps (or multimaps) of port objects, and these can be plugged
and un-plugged at will (within reason). Port uses a mix of the
well-known Adaptor and Proxy design patterns for all data
values, and is used for the Chain-of-command pattern among
UnitGenerators. Holding ports in named maps in UnitGen-
erators, provides us with good object reflection properties in
CSL graphs.

Asynchronous control inputs to CSL patches can also be
handled through Ports, and there are several special subclasses
of class Port to handle interpolating or lag-timed controls.
These are inserted into graphs via the setter functions of CSL
instrument classes (see below), and handle the de-zippering
of stepped dynamic controls such as low-rate sampled con-
tinuous MIDI or OSC control value messages.

2.5 Mix-ins: Controllable, Scalable, Phased

The final component of the model core is the mechanism
and policies through which ports are actually assigned and
used within unit generators. Many of the most important
trade-offs in audio language design are to be found among
the alternative designs to port maps, unit generator inheri-
tance schemes, and multiple inheritance and sharing of be-
havior among unit generators.

Class csl::Controllable is the base of the collection of
classes that add control or signal inputs to UnitGenerators.
(We use Controllable as a virtual superclass so that we can
mix it in more than once.) Controllable defines the map of
port objects, and manages the naming and processing flow
for dynamic inputs. A typical UnitGenerator will have several
input and/or control ports, e.g., for frequency, scale, and off-
set in the case of an oscillator that supports AM and FM. The
pulllnput message is used within a UnitGenerator’s nextBuffer
method to send nextBuffer to a given port.

Controllable has three abstract subclasses that are widely
reused by refinement. Class csl::Scalable defines scale and
offset control ports (which may be constant or dynamic) as
special input map keys; most concrete unit generators in-
herit this as well as UnitGenerator (akin to SuperCollider’s
optional mul and add unit generator constructor arguments
(McCartney 2002)). The class csl::Effect assigns one or more
of a unit generator’s ports the special semantics of signal in-
puts, as in signal filters or panners. csl::Phased adds a default
interpretation of a phase accumulator cache and a frequency
input port.

Although they are used as mix-ins (i.e., they are used in
multiple inheritance and don’t provide virtual methods that
are refined in their subclasses), the Controllable classes im-
plement a version of the Policy and/or Decorator design pat-
terns, and provide template methods as C++ macros; for ex-
ample, Scalable defines macros to declare, load, and update
the scale/offset control ports in the nextBuffer methods of
their subclasses.

Figure 2 shows a subtree of the class csl::Controllable,
with several of its children multiply inheriting from (e.g.,)
Scalable and Effect. Note that several of the leaves constitute
their own rich class hierarchies, as in Oscillators, Filters, or
Envelopes.

2.6 10 and Scopes

We have so far ignored the activation mechanism for graphs,
but it is obviously a major determinant of the framework that
will support processing in any design. As in the above sec-
tions, our design is based on simplicity and visibility.

In the CSL model, graphs are activated (triggered or driven)
by an IO object, which is normally an interface to a sound out-
put driver that receives call-backs from the operating system
at a regular rate (the frame rate divided by the output buffer
size), and forwards them to the root of its DSP graph, sending
that UnitGenerator the nextBuffer message. Other IO classes
are available that write (control or audio) samples to sound
files, or send their data packets to a network socket. Related
to this are classes that implement graphical output such as
oscilloscopes or control-rate monitors; to date, we have im-

Figure 3: CSL processing graphs are activated by IO ob-
jects. Other 10 objects or GUI displays then use the Ob-
server/Observable relationship (shown as dotted arrows in
the Figure) to attach themselves to any unit generator in the
graph.

plemented CSL data views using both the Qt and OpenGL
graphics APIs.

In CSL4, we separate the roles of trigger and data sink,
using the Observer pattern to allow us to attach outputs or
monitors to any unit generator in a graph as shown in Figure
3. Each CSL graph is expected to have exactly one trigger
IO, but that may in fact be a csl::NulllO object that uses a
timer thread to schedule graph activation and discards the IO.
In that case, other IO objects are connected to the graph as
observers of its unit generators.

2.7 Positioned Sound and Spatial Sources

The Spatial audio engine in CSL follows a layered API
complying with the design goals of simplicity and flexibility.
The core of the engine consists of Spatial Sources and Proces-
sors (UnitGenerators). Panners are among the most important
type of these “Processors”. Subsequently, higher API layers
take these processors and sound sources providing a simpler,
more intuitive interface. This layering can be interpreted as a
direct implementation of the Faade pattern.

A Spatial Source is a UnitGenerator that adds spatial in-
formation to a UnitGenerator (Sound Object). Currently a
Spatial Source positions a sound in a 3D space. In the future,
it will also handle source directivity, object radiation, and
possibly size and shape. Spatial Sources are implemented as
Decorators, which wrap around UnitGenerators, adding the
spatial information. This information can be later used by a
Spatial processor that make use of the position of the sound.

Class csl::Panner is the base of a collection of classes
whose main objective is to position input signals in a 3D
space. A Panner is a UnitGenerator that can handle multi-
ple input spatial sources producing a multichannel buffer as
output. A simple way to think of a panner is as an N-input to
M-output mixer. Example panners are VBAP (Vector Base
Amplitude Panner), AmbisonicPanner, BinauralPanner, or
special cases like a 5.1 panner or a stereo panner. The use
of csl::Panner as a superclass is to allow for dynamic choice

of the panner in use.

One layer above, the Spatializer hides the low-level en-
gine, and presents a simple interface. Spatializers manage the
graph for the different components needed, like a Panner and
Distance Cues. Spatializers implement the Strategy Design
Pattern, where the Panners are the strategies. A Spatializer
can then choose at runtime what panner to use.

2.8 Analysis and Feature Extraction

Any general-purpose API or language for sound signal
processing must also enable and support flexible signal analy-
sis and metadata feature extraction functionality. In the model
domain, this means the addition of windowed signal features
in the time and frequency domains, and higher-level derived
features such as spectral tracks and their statistics.

In our case, the FASTLab Music Analysis Kernel (FMAK)
(Pope, Holm, and Kouznetsov 2004) is a sibling of CSL and
uses many of the same models, with an Analyzer class that
closely resembles CSL’s UnitGenerator.

2.9 Putting it all Together

A unit generator class can be described in terms of its
nextBuffer method, which has the general form shown in the
pseudo-code below.

void nextBuffer (Buffer& outBuffer)
get local pointers to output arrays
and to controllable ports
(scale, offset, phase-inc, ...)
set up sample loop vars
(send nextBuffer () to ports)
sample loop
calculate a sample
store sample to output buffer
update input and control values
(e.g., (send nextValue() to ports)
update output pointers
update stored members (e.g., inst. phase)
broadcast change message
(Observers get notified)

In this method, the unit generator uses its prescribed input
and control ports to get buffers of data, and then to get point-
ers to that data for use in its sample computation loop. The
messages void nextBuffer() and sample * nextValue() provide
the glue between unit generators, mediated by ports.

It is left up to the CSL user whether to package a CSL pro-
gram in a single main() function or to write a new instrument
class that encapsulates a DSP graph and a set of accessors
in its constructor. Users can also write their own unit genera-
tor classes, providing a nextBuffer() method that applies some
semantics to one or more named control and/or input ports.

duration

decay
amplitude

right (=1 - left)

Figure 4: Sound file player instrument graph from the canon-
ical software sound synthesis paper; a sample reader/player
object is scaled by an envelope and panner to a stereo output.
In CSL (and other modern languages) the graph would use
four unit generators.

3 Building and Using Graphs

The discussion above concentrated on the core data and
processing objects; we should now address the issues of what
mechanisms are to be used for patch construction, manage-
ment, optimization, and scheduling. This will be determined
largely by the model’s unit generator properties and intercon-
nections. Along with this, there will be requirements as to
how we handle modules and libraries, and how DSP graphs
are connected to real-time control and triggering.

To use CSL, one programs in C++ or a scripting language
(or uses a GUI) to connect UnitGenerator ports into a (prob-
ably, though not necessarily, acyclic) directed graph, which
can be called an instrument or patch. Multiple patches in
a thread can be connected to a mixer for output. Accord-
ing to the metamodel, CSL UnitGenerator/Port graphs use
the Chain of Responsibility design pattern as the activation
framework, i.e., the graph’s root object starts its nextBuffer
method and sends the same request to its input and control
ports as specified by its configuration.

3.1 An Example: A SoundFile Player

As an example of CSL, let’s take the 3rd example from
the CMJ synthesis languages comparison paper (Pope 1993),
a soundfile player with a panner control as shown in Figure
4. In CSL, this can be written as a compact main() function
in a procedural style that consists of calls to the construc-
tor methods of 4 objects: the envelope, the sound file player,
the stereo panner, and the output. The default constructors
to the unit generator classes allow the inputs to be plugged
in at instantiation time, or one can patch generators together
with setter methods such as setScale or addInput. Our main
function would then be,

// amplitude env = std ADSR
ADSR amplEnv(l, 0.1, 0.1, 0.4, 0.3);
// sample file player
SoundFile filePlayer ("name.snd", amplEnv);
// stereo panner/processor
Panner thePanner (filePlayer, 0.2);
// PortAudio IO object
PAIO theIO (thePanner);

The constructor calls in this example connect the unit gen-
erators into the minimal DSP patch for the stereo panned
sound file player. To play it now, we need (in main) to trigger
the envelope and start the output object’s call-back thread.

To extend this example some, we could (1) add another
output to write the output to a file while playing; (2) add a
control-rate oscilloscope to the envelope and a signal-rate os-
cilloscope to the output; (3) create an interface instrument ob-
ject (see below) to encapsulate our player for MIDI and OSC;
we’ll discuss these extensions in the sections below.

CSL supports several mechanisms for processing with mul-
tiple output objects in one or several threads. The simplest
technique is to use the Observer pattern (or dependency mech-
anism) to add an output to a unit generator independent of the
root IO object of the graph in which the unit generator gets
triggered. We can easily instantiate another object of some
10 subclass and say,

// create a file writer
FileIO fileIO("sndFileName");

// add it as a panner dependent
thePanner.attachObserver (£i1eIO);

Because the panner object sends the changed message at
the end of its nextBuffer method, the second output will get a
chance to copy out the final buffer at the end of each callback.

For graphics output, interfaces between CSL and the Qt
GUI library and an OpenGL-based display and interaction
framework (http://glv.mat.ucsb.edu) can be used. To add Qt
widgets that display control and audio signals, one encapsu-
lates the contructor statements we wrote into the constructor
of a subclass of QMainWindow. Within a Qt or GLV appli-
cation, one deals with instrument collections that have GUI
widgets as observers. The GUI code interfaces to the DSP
graph via the instrument’s named map of unit generators, and
GUI buttons can send instrument messages.

3.2 Instruments and Networks

There are several utility classes to make it easier to man-
age DSP graphs. An Instrument object has a DSP graph, a
set of reflective accessors, and a list of envelopes. The DSP
graph is the instrument patch, the accessors describe what the
control parameters of the patch are (i.e., their names, types,
and setter functions), and the envelope list is the collection of
envelopes that need to be triggered to start a new note. With

Observers UGen Instrument Gesture
and GUI Graph Accessors Sensors
AD/SIR 0sc
trigger
GUI la7| MID
Scope Snd)
PortMap| File L file name
:Scale rate
File
Writer
\‘ | position
GuUI
Scope |w—_] Input
Obsrvrs nextBuffer()

calls to Ports

Figure 5: The detailed CSL graph for the sound file player
shows the unit generators at the center, the GUI I/O con-
nected via the observer dependency pattern on the left, and
the Instrument object’s accessors on the right, connected to
OSC and MIDI I/O.

this abstraction of a graph, one can easily construct code that
automatically creates the mapping glue to control CSL pro-
grams from OSC (Freed and Wright 1997), CORBA, XML,
or MIDI. The Instrument framework represents a reflective
composite metamodel with a Reflective Adaptor or Wrapper
design pattern, and is used by tools (such as the OSC and GUI
interface classes) in the Builder or Interpreter patterns.

The next logical step in our sound file player example
would be to connect the player to external triggers and con-
trol. We need to declare an instrument class that will encap-
sulate our player for MIDI and OSC control. The instrument
holds onto the root of the graph, and adds these reflective ac-
cessors. In its constructor method, we create a named map of
the graph’s unit generators, and a list of Accessors that map
OSC command names or MIDI control values to flags sent to
a general setter function

// add ugens to the map for
// external reference
mUGens ["Pan"] = thePanner;
mUGens ["Play"] = fileplayer;
// add accessors with names and
// setter flags
mAccessors.push (new Accessor ("am", setAmplF));
mAccessors.push (new Accessor ("po", setPosF));

One could add setter functions to the instrument class to
map OSC/MIDI messages for the envelope parameters, stereo
position, and file name, and for triggering the envelope, mak-
ing a flexible enveloped stereo sample player with interactive
control. The detailed view of our sound file player instrument

CSLRF/A7p ™
Protocgy

Figure 6: A multi-host CSL graph with UnitGenerator graphs
running on 2 computers and a sample streaming mechanism
using the RTP protocol between them. Control comes in to
either server from MIDI or Open Sound Control messages.

is shown in Figure 6, which shows the four core objects (in
the center) with their inherited members (port maps and ob-
server lists) connected to one another and to outside objects.

3.3 OSC and MIDI Control

The design decisions implicit in the object model will de-
termine how DSP networks are run and controlled. In CSL
servers, we can use Instrument classes described above for
OSC or for MIDI interfaces with code generators to fill in the
glue code for mapping. Using CSL/OSC instrument libraries
controlled by CSL GestureSensor control mappers is now a
simple matter.

3.4 Distributed Graphs

Figure 6 shows a distributed instrument where CSL pro-
cesses are running on separate host computers; both server
(left) and client (right) receive control inputs from MIDI or
Open Sound Control, and use CSL RTP_IO (server) and Re-
moteUnitGenerator (client) objects to stream samples over a
socket connection using the RTP network protocol (Schulzrinne,
Casner, Frederick, and Jacobson 1996). Remote sample and
control streaming interfaces have been built for a number of
protocols ranging from low-level UDP sockets to higher-level
managed and monitored RTP connections.

In a recent student project, the CSL framework was used
to implement a system for wireless audio transmission, stor-
age, and web hosting. Referring to Figure 6, a connection be-
tween a wireless recording client (Host A) and a wired server
(Host B) was established using the CSL RemoteUnitGenera-
tor and RTP_IO objects.

RTP packets are streamed from the RTP_IO object of Host
A to the RemoteUnitGenerator at Host B. A subclass of the
CSL RingBuffer class, RtpRingBuffer, buffers the network
connection of RemoteUnitGenerator to guard against network
jitter. The RTCP control protocol is used to provide Quality
of Service statistics to all hosts, allowing for dynamic band-

width control or lost packet interpolation to help ensure the
reliability of the network connection.

4 Summary and Evaluation

Many systems in the literature address similar basic re-
quirements but have vastly divergent design goals and aes-
thetics. In our case, we were driven most strongly by our
desire to build an open and simple system based on a strict ad-
herence to the 4MS metamodel. Our conscious use of known
design patterns wherever possible also had a significant im-
pact on CSL’s flavor. Lastly, we deliberated on the various
trade-offs, frequently between simplicity, scalability, and per-
formance, often opting to prioritize the former over the latter.

5 Conclusions

Building a class hierarchy of digital audio unit generators
for sound synthesis and processing is relatively easy. Build-
ing one based on a sophisticated metamodel that combines
ease of use, flexibility, efficiency, and mature design princi-
ples is somewhat more of a challenge. In the design of CSL4,
we added requirements that arose out of our recent projects.
Simplicity and short learning curve have always been cen-
tral design criteria for CSL, a feature that sets it apart from
many of its siblings such as CLAM or SuperCollider. It has
been in continuous use since 2000 as a platform for teach-
ing graduate courses on digital audio software at UCSB (see
http://www.mat.ucsb.edu/240).

This paper described several of the novel design choices
and the use of modern design patterns in the most recent ver-
sion of CSL. Our team continues to look for ways to make
CSL a better client of the best results of current software en-
gineering practice, and to drive the evolution of CSL with
concrete applications

The CSL code base and documentation are available from
the CREATE web site at http://create.ucsb.edu/CSL.

References

Amatriain, X. (2005). An Object-Oriented Metamodel for Digital
Signal Processing with a focus on Audio and Music. Ph. D.
thesis, Universitat Pompeu Fabra, Barcelona, Spain.

Amatriain, X. and P. Arumi (2005). Developing cross-platform
audio and music applications with the clam framework. In

Proceedings of International Computer Music Conference
2005.

Amatriain, X. and S. Pope (2006). An object-oriented metamodel
for multimedia processing. ACM Transactions on Multime-
dia Computing, Communications and Applications. in press.

Arumi, P.,, D. Garcia, and X. Amatriain (2006). A data flow pat-
tern language for audio and music computing. In Proceed-
ings of the 2006 Pattern Languages of Programming Confer-
ence, Portland, Oregon. pending acceptance.

Burk, P. (1998). JSyn- A Real-time Synthesis API for Java. In
Proceedings of the 1998 International Computer Music Con-
ference (ICMC ’98). Computer Music Associaciation.

Freed, A. and M. Wright (1997). Open sound control: A new
protocol for communicating with sound synthesizers. In Pro-
ceedings of the 1997 International Computer Music Confer-
ence (ICMC ’97). International Computer Music Associa-
tion.

Lanski, P. (1990). The architecture and musical logic and cmix.
In Proceedings of the 1990 International Computer Music
Conference (ICMC 90).

Mathews, M. V. (1969). The Technology of Computer Music. MIT
Press.

McCartney, J. (2002). Rethinking the Computer Music Lan-
guage: SuperCollider. Computer Music Journal 26(4), 61—
68.

Pope, S., A. Engberg, F. Holm, and A. Wolf (2001). The dis-
tributed processing environment for high-performance dis-
tributed multimedia applications. In Proc. 2001 IEEE Mul-
timedia Technology and Applications Conf., U. C. Irvine.

Pope, S., F. Holm, and A. Kouznetsov (2004). Feature extraction
and database design for music software. In Proceedings of
the 2004 International Computer Music Conference (ICMC
’04). International Computer Music Association.

Pope, S. and C. Ramakrishnan (2003). The create signal library
(sizzle): Design, issues, and applications. In Proceedings of
the 2003 International Computer Music Conference (ICMC
2003). International Computer Music Association.

Pope, S. T. (1993). Machine Tongues XV: Three packages for
Software Sound Synthesis. Computer Music Journal 17(2),
23-54.

Pope, S. T. (2003). Recent Developments in Siren: Modeling,
Control and Interaction for Large-scale Distributed Music
Software. In Proceedings of the 2003 International Com-
puter Music Conference (ICMC ’03). Computer Music As-
sociation. Also in Journal of Object-Oriented Programming
1(1): 6-14.

Scaletti, C. (1991). The Well-tempered Object. Musical Applica-
tions of Object-Oriented Software Technology, Chapter The
Kyma/Platypus Computer Music Workstation, pp. 119-140.
MIT Press.

Schottstaedt, W. (2000). Common Lisp Music Documentation.
http://www-ccrma-stanford.edu/software/clm: CCRMA-
Stanford University.

Schulzrinne, H., S. Casner, R. Frederick, and V. Jacobson (1996).
RTP: A Transport Protocol for Real-Time Applications. IETF
RFC1889.

Wright, M. (1999). Audio applications of the sound description
interchange format. In Proceedings of the 107th AES Con-
vention.

