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ABSTRACT
Context has been recognized as an important factor to con-
sider in personalized Recommender Systems. However, most
model-based Collaborative Filtering approaches such as Ma-
trix Factorization do not provide a straightforward way of
integrating context information into the model. In this work,
we introduce a Collaborative Filtering method based on
Tensor Factorization, a generalization of Matrix Factoriza-
tion that allows for a flexible and generic integration of con-
textual information by modeling the data as a User-Item-
Context N -dimensional tensor instead of the traditional 2D
User-Item matrix. In the proposed model, called Multiverse
Recommendation, different types of context are considered
as additional dimensions in the representation of the data as
a tensor. The factorization of this tensor leads to a compact
model of the data which can be used to provide context-
aware recommendations.

We provide an algorithm to address the N -dimensional
factorization, and show that the Multiverse Recommenda-
tion improves upon non-contextual Matrix Factorization up
to 30% in terms of the Mean Average Error (MAE). We
also compare to two state-of-the-art context-aware meth-
ods and show that Tensor Factorization consistently out-
performs them both in semi-synthetic and real-world data –
improvements range from 2.5% to more than 12% depend-
ing on the data. Noticeably, our approach outperforms other
methods by a wider margin whenever more contextual in-
formation is available.

Categories and Subject Descriptors
H3.3 [Information Search and Retrieval]: Information
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filtering—Collaborative Filtering ; H3.4 [Systems and Soft-
ware]: Performance evaluation (efficiency and effectiveness);
G3 [Probability and Statistics]: Correlation and regres-
sion analysis; G1.6 [Optimization]: Gradient methods

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
Recommender Systems have become ubiquitous tools to

find our way in the age of information. User preferences are
inferred from past consumption patterns or explicit feed-
back and predictions are computed by analyzing other users
– Collaborative Filtering (CF) – or categorizing the items by
their content – Content-based Recommendations. The sim-
plest formulation of the recommendation problem involves
predicting values for user, item pairs. In the CF setting,
this turns the problem into a sparse two-dimensional matrix
in which we have very few values for some user, item pairs
that must be used to compute the missing values of interest.

The two main CF approaches that emerged as victorious
from the Netflix Prize were neighborhood methods and la-
tent factor models. Neighborhood methods use similarity
functions such as the Pearson Correlation or Cosine Dis-
tance to compute sets of neighbors to a user or an item.
Recommendations are then computed by using data from
those neighbors. On the other hand, latent factor models
[6] such as Matrix Factorization (MF) solve the recommen-
dation problem by decomposing the user, item matrix and
learning latent factors for each user and item in the data.
The underlying assumption is that both users and items can
be modeled by a reduced number of factors. This approach
has proven to be the most accurate method in isolation in
different settings.

Although the simplified user, item recommendation model
can be used successfully in many settings, it is not uncom-
mon to find real settings in which additional variables come
into play. For instance, there are many situations where time
plays an important role in defining a user’s preference for an



item. In this case, the two- dimensional matrix is turned
into a three dimensional user, item, time tensor. The set of
variables that influence the user’s preference for a given item
are referred to as context.

In this paper, we present a generic CF model that is based
on a generalization of MF to address contextual recommen-
dation problems. To this end, we extend the concept of
matrix factorization to that of tensor factorization (see sec-
tion 3.1). A tensor is a generalization of the matrix concept
to multiple dimensions. In the example given above, the
usual user, item two-dimensional matrix is converted into a
three-dimensional tensor (see Figure 1). Tensor Factoriza-
tion (TF) can be used to add any number – and kind – of
variables to a recommender system. In particular, it could
be used to hybridize content and CF in a way similar to the
approach by Pilaszy and Tikk [17]. However, in this work
we focus on the use of TF for adding contextual informa-
tion. We call our approach to contextual recommendation
via TF Multiverse Recommendation because it can be used
to efficiently bridge hidden “worlds” separated by different
contexts and therefore collapse parallel dimensions into a
coherent model.

The relation of our model to other latent models and
context-aware systems is reviewed in section 2, and our ex-
perimental results are summarized in section 4, where we
validate the proposed approach on several synthetic and real
world datasets. In addition, we empirically verify that our
approach improves the baseline when not taking into ac-
count the context and show how our method outperforms
state-of-the-art contextual approaches.

The proposed model brings a number of contributions to
the area of contextual recommendations, including the abil-
ity to:

• Generalize efficient MF approaches to theN -dimensional
case in a compact way

• Include any number of contextual dimensions into the
model itself

• Benefit from several loss functions designed to fine-
tune the optimization criteria

• Train the model with a fast and straightforward algo-
rithm

• Take advantage of the sparsity of the data while still
exploiting the interaction between all users-items and
context.

2. RELATED WORK
Although most of the work on Collaborative Filtering has

focused on the traditional two-dimensional user/item prob-
lem, there has been a recent increase of interest in adding
context to recommendations. This is probably due to the
relevance of context in mobile applications and the success
that some applications have had using some contextual vari-
able such as location (e.g. Foursquare 1).

Adomavicius and Tuzhilin [3] do a thorough review of
approaches to contextual recommendations in their book
chapter and categorize context-aware recommender systems
(CARS) into three types: contextual pre-filtering, where con-
text drives data selection; contextual post-filtering, where

1http://www.foursquare.com

context is used to filter recommendations once they have
been computed using a traditional approach; and contex-
tual modeling, where context is integrated directly into the
model. An example of contextual pre-filtering is the so-
called user micro-profile, in which a single user is represented
by a hierarchy of possibly overlapping contextual profiles
[4]. Post-filtering methods can use traditional approaches
and then apply filtering or weighting. In their experimen-
tal evaluation, Panniello et al. [16] found that the choice
of a pre-filtering or post-filtering strategy depends on the
particular method and sometimes a simple post-filter can
outperform an elaborate pre-filtering approach.

The approach proposed in this paper belongs to the last
category of contextual modeling. Although some standard
model-based approaches could theoretically accept more di-
mensions, the only models to report results in this cate-
gory are Oku et al.’s Context-aware Support Vector Ma-
chines (SVM) [13]. The authors consider support vectors
in a multidimensional space and find the separating hyper-
plane. Their experiments show that contextual recommen-
dations perform better than non-contextual. Other authors
that have addressed the issue of context-aware recommenda-
tions from a multidimensional perspective are Adomavicius
et al. [1], who introduce a multidimensional model based on
the OnLine Analytical Processing (OLAP) technique for de-
cision support which still is based on a pre-filtering method;
and Palmisano et al. [15] who describe contextual informa-
tion with K dimensions, each of them having q attributes.

Factorization models have recently become one of the pre-
ferred approaches to Collaborative Filtering, especially when
combined with neighborhood methods [9]. However, even
when processing datasets such as the Netflix Prize, the im-
portance of context has become clear. Koren has recently
introduced a temporal model into the factor model called
timeSVD++ [10] which significantly improves the Root Mean
Squared Error (RMSE) on the Netflix data compared to pre-
vious non-temporal factorization models.

Other authors have also introduced time as a specific fac-
tor model. Xiong et al. present a Bayesian Probabilistic TF
model to capture the temporal evolution of online shopping
preferences [23]. The authors show in their experiments that
results using this third dimension in the form of a tensor does
improve accuracy when compared to the non-temporal case.
As we will explain later, Xiong’s model can in fact be con-
sidered as a simple case instance of the more generic model
presented in this paper. Finally, three dimensional TF has
also been proposed by Rendle et al., for Collaborative tag
Recommendation. Rendle et al. use the third tensor dimen-
sion in their user, item, tag model to represent the target
variable which in their case are tags coded as binary vec-
tors where the presences of a tag is market by a 1 and the
absence by a 0 [18].

However and to the best of our knowledge, there is no
previous work on the use of N-dimensional tensors for CF,
which is the main contribution of this paper and will be
presented next in detail.

3. MULTIVERSE RECOMMENDATION
TF is an existing N -dimensional extension of Matrix Fac-

torization. However, a straightforward use of this model
makes it unsuitable for the CF case. In the current section
we introduce the model of Matrix and Tensor Factorization
and explain the details of how we have adapted this model



for N-dimensional CF.
The main idea behind the use of TF is that we can take ad-

vantage of the same principles behind Matrix Factorization
to deal with N -dimensional information. However, before
we dive into the details of the TF model, we shall briefly
summarize the two-dimensional MF approach.

Matrix Factorization.
CF techniques based on MF work by assuming that rat-

ings provided by users on items can be represented in a
sparse matrix Y ∈ Yn×m where (n is the number of users
and m the number of items). The observed values in Y
are thus formed by the rating information provided by the
users on the items. The CF problem then boils down to
Matrix Completion problem. In MF techniques the aim is
to factorize the matrix of observed ratings into two matrices
U ∈ Rn×d and M ∈ Rm×d such that F := UM> approx-
imates Y , i.e. minimizes a loss function L(F, Y ) between
observed and predicted values. In most cases, a regulariza-
tion term for better generalization performance is added to
the loss function and thus the objective function becomes
L(F, Y ) + Ω(F ). Standard choices for L include the least
squares loss function L(F, Y ) = 1

2
(F − Y )2 and for Ω the

Frobenius norm i.e. Ω(F ) = λ
ˆ
‖U‖2Frob + ‖M‖2Frob

˜
.

3.1 Tensor Factorization

Figure 1: Illustration of the (3-dimensional)
HOSVD tensor factorization model.

N -dimensional TF is a generic model framework for rec-
ommendations that is able to handle N -dimensional data
and profit from most of the advantages of MF, such as fast
prediction computations and simple and efficient optimiza-
tion techniques. We shall now introduce the generic TF
model and describe its specific adaptation to context-aware
CF in Section 3.2.

Notation.
For the sake of simplicity, we will describe the model for

a single contextual variable C, and therefore Y the ten-
sor containing the ratings will be a 3-dimensional tensor.
The generalization to larger numbers of context variables
and N dimensions is trivial. In the following we denote
the sparse tensor of rating observations by Y ∈ Yn×m×c,
where n are the number of users, m the number of items,
and c where ci ∈ {1, . . . , c} the number of contextual vari-
ables. Typically, the rating is given on a five star scale
and thus Y ∈ {0, . . . , 5}n×m×c, where the value 0 indicates
that a user did not rate an item. In this sense, 0 is spe-

cial since it does not indicate that a user dislikes an item
but rather that data is missing. We are using two tensor
operations a tensor-matrix multiplication operator denoted
by ×U where the subscript shows the direction on the ten-
sor on which to multiply the matrix i.e T = Y ×U U is
Tljk =

Pn
i=1 YijkUij and the tensor outer product denoted

by ⊗. Finally, D ∈ {0; 1}n×m×c is a binary tensor with
nonzero entries Dijk whenever Yijk is observed and we de-
note by Ui∗ the entries of the ith row of matrix U .

HOSVD-decomposition.
There are different types of tensor decomposition models

in the literature, such as the Canonical Decomposition or
Parallel Factors – which is also known as the CP-decomposition
– and the High Order Singular Value decomposition (HOSVD).
In our approach, we follow the HOSVD formulation shown
in Figure 1, where the 3-dimensional tensor is factorized into
three matrices U ∈ Rn×dU , M ∈ Rm×dM and C ∈ Rc×dC

and one central tensor S ∈ RdU×dM×dC . In this case, the
decision function for a single user i, item j, context k com-
bination becomes:

Fijk = S ×U Ui∗ ×M Mj∗ ×C Ck∗ (1)

This decomposition model allows for full control over the di-
mensionality of the factors extracted for the users, items and
context by adjusting the du, dM and dC parameters. This
property is valuable in the case of large real world datasets
where the matrices U and M can grow in size and potentially
pose a storage problem.

3.2 Tensor Factorization for CF
The aim in proposing an N-dimensional TF approach for

context-based recommendation is to model the context vari-
ables in the same way as the users and items are modeled
in MF techniques by taking the interactions between users-
items-context into account. We shall refer to this approach
as Multiverse Recommendations.

Existing HOSVD methods (e.g. [11]) require a dense ma-
trix Y and therefore ignore the sparsity of the input data.
Treating Y as a dense tensor with missing entries being as-
sumed to be 0, would introduce a bias against unobserved
ratings. The model of Regularized TF introduced in this
section avoids these issues by optimizing only the observed
values in the rating tensor. Also note that, in contrast to
standard SVD and HOSVD methods, in CF there is no need
for imposing orthogonality constrains on the factors.

Multiverse Recommendations have a number of advan-
tages compared to many of the current context-based meth-
ods, including: (1) No need for pre- or post-filtering : In
contrast to many of the current algorithms which rely on
splitting and pre- or post-filtering the data based on con-
text, TF utilizes all the available ratings to model the users
and the items. Splitting or pre-or post- filtering the data
based on the context can lead to loss of information about
the interactions between the different context settings; (2)
Computational simplicity: Many of the proposed methods
rely on a sequence of techniques which often prove to be
computationally expensive rather than on a single and less
computationally expensive model, as is the case in TF; (3)
Ability to handle N-dimensions: Moreover, the TF approach
we introduce generalizes well to an arbitrary amount of con-
text variables while adding relatively little computational
overhead.



3.2.1 Loss Function
In analogy to MF approaches [19, 22], we define the loss

function as:

L(F, Y ) :=
1

‖S‖1

X
i,j,k

Dijkl(Fijk, Yijk) (2)

where l : R×Y → R is a pointwise loss function penalizing
the distance between estimate and observation and Fijk is
given by equation 1. Note that the total loss L is defined
only on the observed values in the tensor Y . Possible choices
for the loss function l include the following:

Squared error: Provides an estimate of the conditional
mean

l(f, y) =
1

2
(f − y)2 and

∂f l(f, y) = f − y

Absolute loss: Provides an estimate of the conditional me-
dian

l(f, y) = |f − y| and

∂f l(f, y) = sgn[f − y]

ε-insensitive loss: Chosen to ignore deviations of up to ε
via

l(f, y) = max(0, |y − f | − ε) and

∂f l(f, y) =

(
sgn[f − y] if |f − y| > ε

0 otherwise

These are not the only loss functions possible. For in-
stance, by using a quantile loss we can prioritize estimates
based on the confidence with which we would like to rec-
ommend events. Other possible loss functions include the
Huber loss [8] and the hinge loss function, which can be
useful in the case of implicit taste information [21].

3.2.2 Regularization
Simply minimizing a loss function is known to lead to

overfitting. Given the factors U,M,C, S which constitute
our model, we have a choice of ways to ensure that the model
complexity does not grow without bound. A simple option
is to add a regularization term based on the l2 norm of these
factors [20]. In the case of a matrix, this norm is also known
as the Frobenius norm.

Ω[U,M,C] :=
1

2

ˆ
λU ‖U‖2Frob + λM ‖M‖2Frob + λC ‖C‖2Frob

˜
.

(3)

In a similar manner, we can also restrict the complexity
of the central tensor S by imposing a l2 norm penalty:

Ω[S] :=
1

2

ˆ
λS ‖S‖2Frob

˜
. (4)

Note here that one can also impose an ell1 norm as a
regularizer which is known to lead to sparse solutions [12,
7]:

Ω[U,M,C] =
X
idU

|UidU |+
X
idM

|MidM |
X
idC

|CcdC | (5)

Even though regularizer in Eq.5 leads to particularly sparse
models, optimization is non-trivial. During the course of the

optimization process, a potentially large number of parame-
ters is needed to make progress. Hence, in this work we use
regularizers 3 for U,M,C and 4 for S.

3.2.3 Optimization
Overall, we strive to minimize a regularized risk functional

that is a combination of L(F, Y ) and Ω[U,M,C]. The ob-
jective function for the minimization problem is:

R[U,M,C, S] := L(F, Y ) + Ω[U,M,C] + Ω[S] (6)

Minimizing this objective function can be done using many
approaches. Subspace descent is a popular choice in MF
methods and could be used in the tensor setting. In sub-
space descent one optimizes iteratively over individual com-
ponents of the model while keeping the remaining compo-
nents fixed, e.g. optimize over the U matrix while keeping
the remaining matrices and tensor fixed, then over M etc.
This method leads to quick convergence but requires the
optimization procedure to be run in a batch setting.

As dataset sizes grow, it becomes increasingly infeasible
to solve factorization problems by batch optimization. In-
stead, we resort to a simple online algorithm which performs
stochastic gradient descent (SGD) in the factors Ui∗, Mj∗,
Ck∗ and S for a given rating Yijk simultaneously. In order
to compute the updates for the SGD algorithm, we need to
compute the gradients of the loss function and eventually
the objective function with respect to the individual com-
ponents of the model:

∂Ui∗ l(Fijk, Yijk) = ∂Fijk l(Fijk, Yijk)S ×M Mj∗ ×C Ck∗

∂Mj∗ l(Fijk, Yijk) = ∂Fijk l(Fijk, Yijk)S ×U Ui∗ ×C Ck∗

∂Ck∗ l(Fijk, Yijk) = ∂Fijk l(Fijk, Yijk)S ×U Ui∗ ×M Mj∗

∂Sl(Fijk, Yijk) = ∂Fijk l(Fijk, Yijk)Ui∗ ⊗Mj∗ ⊗ Ck∗

Algorithm 1 Tensor Factorization

Input Y , d
Initialize U ∈ Rn×dU , M ∈ Rm×dM , C ∈ Rc×dC and
S ∈ RdU×dM×dC with small random values.
Set t = t0
while (i, j, k) in observations Y do
η ←− 1√

t
and t←− t+ 1

Fijk = S ×U Ui∗ ×M Mj∗ ×C Ck∗
Ui∗ ←− Ui∗ − ηλUUi∗ − η∂Ui∗ l(Fijk, Yijk)
Mj∗ ←−Mj∗ − ηλMMj∗ − η∂Mj∗ l(Fijk, Yijk)
Ck∗ ←− Ck∗ − ηλCCk∗ − η∂Ck∗ l(Fijk, Yijk)
S ←− S − ηλSS − η∂Sl(Fijk, Yijk)

end while
Output U,M,C, S

The Multiverse Recommendation TF method is summa-
rized in Algorithm 1, which is easy to implement since it
accesses only one row of U , M , and C at a time. In ad-
dition, it is easy to parallelize by performing several up-
dates independently, provided that the (i, j, k) sets are all
non-overlapping. Note that the algorithm scales linearly to
the number of ratings K and the dimensionality of the fac-
tors dU , dM , dC . Therefore, the algorithm complexity is
O(KdUdMdC). Finally, it easily generalizes to the case of
N context dimensions by adding one additional update per
context variable.



3.2.4 Missing Context Information
TF also allows for an intuitive way of dealing with missing

context information. Assume that we are missing the con-
text information of a rating done by user i′ on item j′ Yi′,j′ .
Intuitively, one would like to add the rating information in
the profile information of the user and the item while either
not updating the information of the context profile or ap-
plying the update equally on all context profiles. There are
thus two options:

• Update the Ui′∗ and Mj′∗ factors and skip the C and
S factors update

• Update the Ui′∗ and Mj′∗ factors while updating all
the context profiles in C, but with a step size η divided
by the number of context cases c. We can then update
the central tensor S using all the context cases dividing
the step size by c

4. EXPERIMENTS
This section provides the experimental evaluation of the

proposed Multiverse Recommendation TF algorithm. First,
we analyze the impact of using contextual information by
comparing the algorithm to standard non-context-aware MF.
We then compare TF to two state-of-the art context-based
collaborative filtering algorithms presented in [2, 5]. We
evaluate the algorithms on two real world datasets, one of
them kindly provided by Adomavicius et al. [2]. Moreover,
in order to better understand the behavior of the methods,
we use a synthetic dataset where we control the influence of
the context variable.

4.1 Experimental setup
Before reporting the results, we shall now detail the exper-

imental setup including the datasets used, the experimental
protocol, and the different context-aware methods we com-
pare against.

4.1.1 The data
We test the proposed method on six semi-synthetic data

sets with ratings in a {1, . . . , 5} scale. The datasets were
generated using the Yahoo! Webscope movies data set 2,
which contains 221K ratings, for 11,915 movies by 7,642
users. The semi-synthetic data sets are used to analyze
context-aware methods when varying the influence of the
context on the user ratings. The original Yahoo! data set
contains user age and gender features. We defined three
age groups: users below 18, between 18 and 50, and above
50. We modified the original Yahoo! data set by replacing
the gender feature with a new artificial feature c ∈ {0, 1}
that was assigned randomly to the value 1 or 0 for each rat-
ing. This feature c is representing a contextual condition
that can affect the rating. We randomly choose α ∗ 100%
items from the dataset, and for these items we randomly
pick β ∗ 100% of the ratings to modify. We increase (or de-
crease) the rating value by one if c = 1 (c = 0) if the rating
value was not already 5 (1). For example, if α = 0.9 and
β = 0.5, the corresponding synthetic data set has 90% of
its items altered with profiles that have 50% of their ratings
changed. We generated 6 semi-synthetic data sets varying
α ∈ {0.1, 0.5, 0.9} and β ∈ {0.1, 0.5, 0.9}. Because of the way

2Webscope v1.0, http://research.yahoo.com/

Data set Users Movies Context Dim. Ratings Scale
Yahoo! 7642 11915 2 221K 1-5
Adom. 84 192 5 1464 1-13
Food 212 20 2 6360 1-5

Table 1: Data set statistics

we are generating these datasets, the contextual condition
is “influencing” the rating value more as α and β increase.

The second dataset is derived from the one used by Ado-
mavicius et al. [2]. It contains 1464 ratings by 84 users for
192 movies. The ratings were collected in a survey of college
students. The students where asked to fill out a question-
naire on movies using a rating scale ranging from 1 (hate) to
13 (absolutely love). They were also queried on additional
information about the context of the movie-watching expe-
rience. In our experiments we used 5 contextual features:
companion, day of the week, if it was on the opening week-
end, season, and year seen. Note that in our experiments
we used a slightly different dataset compared to the original
experiments in [2]: we used more ratings and took into ac-
count features that were not considered before, i.e., the year
and season when the movie was seen.

The third dataset was used by Hideki et al. [14] and pro-
vided by the authors. It contains food rating data from
212 users on 20 food menus. To acquire the data, the au-
thors designed a two stage Internet questionnaire survey.
The users were asked to rate the food menu while being
in different levels of hunger. Moreover, some ratings were
done while really experiencing the situation (i.e., partici-
pants were hungry and ordered the menu) and some while
imagining the situation. For example, in the virtual situa-
tion participants could be full, but should have provided a
rating for a food menu imagining that they are hungry. For
this data set we use two context features: the three degrees
of hunger and binary feature specifying if the situation was
virtual or real.

4.1.2 Evaluation Protocol
We assess the performance of the models by conducting

a 5-fold cross-validation and computing the Mean Average
Error (MAE), defined as follows:

MAE =
1

K

n,m,cX
ijk

Dijk‖Yijk − Fijk‖ (7)

where K is the total number of ratings in the test set. This
measure is one of the most widely used performance mea-
sures in the recommender systems literature.

We use the Absolute loss function as defined in 3.2.1. It
is important to note that the TF approach allows for direct
optimization of the evaluation measure, i.e., when using the
MAE the ideal loss function for minimizing this measure is
the Absolute loss function. However, if the error measure
was set to RMSE, we could optimize the least-square loss
function. For the training of the TF algorithm we use 10
epochs.

We regularize using the l2 norm both on the matrices and
the central tensor as explained in Sec. 3.2.2. Due to com-
putational and time constrains we only conduct limited pa-
rameter search on all methods tested. For the TF algorithm,
we set the regularization parameters λ = λU = λM = λC



and we thus end up with two regularization parameters λ
and λS , the initial learning rate, and the dimensionalities
of the individual components of the models dU , dM etc. as
parameters.

All reported results are the average of a 5-fold cross-validation.
We do not report on the variance of the results since it was
insignificant in our experiments, and did not qualitatively
influence our findings and conclusions. Moreover, all differ-
ences between TF and the other methods are statistically
significant.

4.1.3 Context-based Methods in Comparison
We choose two state-of-the-art context aware collabora-

tive filtering methods that are based on pre-filtering and
compare them to N -dimensional Multiverse Recommenda-
tion based on TF.

The first one is a reduction based approach, which is based
on OLAP [2], and extends classical Collaborative Filtering
methods by adding contextual information to the represen-
tation of users and items. This reduction based method com-
putes recommendations using only the ratings made in the
same context as the target one. The exact contextual seg-
ments that optimize the prediction are searched (optimized)
among those that improve the accuracy of the prediction.
This is a rather computationally expensive operation as for
each combination of contextual conditions, a Collaborative
Filtering model needs to be trained and tested.

The second method that we use in our experiments is
item splitting [5], which overcomes the computational is-
sues of the reduction based approaches and provides a more
dynamic solution. Item splitting identifies items that have
significant differences in the ratings. For each of these items,
it splits the ratings into two subsets, creating two new arti-
ficial items with ratings assigned to these two subsets. The
split is determined by the value of one contextual variable
cj – i.e., all the ratings that have been acquired in a context
where the contextual feature cj took a certain value. The
method then determines if the two subsets of ratings have
some (statistical significant) difference, e.g., in the mean. If
this is the case, the split is done and the original item in
the ratings matrix is replaced by the two newly generated
items.

Note, that both pre-filtering methods use a standard MF
approach as the main CF algorithm. Moreover, both meth-
ods exploit the tradeoff between less and more relevant data
and thus increase data sparsity. This is not the case in the
TF model where all the data is used to model users, item
and context factors.

4.2 Results
We first conduct some experiments to assess the relevance

of contextual information. In order to do so, we compare our
TF method with a regular non-context-aware MF method.
Then we measure the goodness of our approach by compar-
ing it to the other context-aware methods explained in Sec.
4.1.3 on different datasets and contextual conditions.

4.2.1 Tensor vs. Matrix Factorization
We first compare the N -dimensional TF approach to stan-

dard MF. That is, we use all the available context informa-
tion in the TF model while we limit the MF approach to the
standard user-item-rating setting, not adding any contextual
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Figure 2: Comparison of matrix (no context) and
tensor (context) factorization on the Adom and
Food data.

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

M
A

E

α=0.1

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
α=0.5

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
α=0.9

No Context Reduction Item-Split Tensor Factorization

Figure 3: Comparison of context-aware methods on
artificial data

variables.
Figure 2 shows the results of Tensor and Matrix Factoriza-

tion on the real world Adom and Food data – See Sec.4.1.1
for details on any of the used datasets. We observe that
adding information in the form of context variables does
make a significant (14% for the Adom and 10% for the Food
data) difference in the performance. Note that when we use
the Adom and Food data we end up with 7-Dimensional and
4-Dimensional TF models respectively since the Adom data
contains 5 contextual variables and the Food data 2.

Figure 3 depicts the results of Tensor (in green) and Ma-
trix Factorization (in white) on the artificial Yahoo dataset.
As expected, the TF model outperforms the standard non-
context aware MF method by 5% in the low context data
(α = 0.1) up to 30% in the high context case (α = 0.9).
When the context variable is not used in the Collaborative
Filtering model, the contextual information acts as noise
added to the data. A non-contextual model such as MF
cannot distinguish between noise and a functional depen-
dency from a hidden variable. Since we are collapsing all
the information into a standard two-dimensional MF model,
the method fails to model this influence. In fact, MF alone
cannot exploit the additional information contained in this
feature and cannot effectively deal with the influence of this
variable. We observe that the stronger the influence of the
context variable the higher the MAE for MF.

Note here that the training time of a Python implementa-
tion of the Multiverse Recommendation TF method on 80%
of the Yahoo! data takes approximately 10 minutes on a
Core 2 duo computer.

4.2.2 Comparison to Context-Aware Methods
We now compare the pre-filtering based context-aware

methods to TF. Figure 3 shows a comparison of the TF
method with the various context-aware CF methods. The
higher the influence of the context variable, the better the
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Figure 4: Evolution of MAE values for different
methods with increasing influence of the context
variable

TF methods performs compared to the other context-aware
methods. Also note that when“context”has strong influence
(α ≥ 0.5, β ≥ 0.5), all three context-aware methods outper-
form the MF method from 4% in the low context case up to
12% in the high context data (α = 0.9). The performance
advantage of the context-based method increases substan-
tially when more information is covered by the contextual
feature c (see figure 4). The biggest improvement is ob-
served when α = 0.9, β = 0.9. In fact, for this data set the
reduction-based approach improved MAE by 23.9%, item
splitting improved by 24.2%, TF by 30.8% compared to the
non-Context model.

More notably, for all 3 synthetic datasets TF uniformly
outperforms all other methods. We also observe that as the
influence of context increases, so does the gain when us-
ing TF when compared to both the OLAP-based approach
and Item splitting. The proposed Multiverse Recommen-
dation method also has the overall best performance when
α = 0.9, β = 0.9. It seems to efficiently exploit the linear
dependency between the ratings and the contextual feature.
We also observe that the performance of the non-context-
aware MF model deteriorates with the growing influence of
the context variable. As mentioned above, this is due to the
fact that without the context variable included in the model,
the influence of the context in the data acts as a source of
noise that cannot be modeled by simple MF.

We carry out the second set of experiments using the de-
scribed real world data – Adom and Food (see Sec.4.1.1 for
more details). Figure 5 compares the same methods as in
the previous experiment. The best performing method for
these datasets is again TF, that outperforms both contex-
tual pre-filtering methods and the context free method (MF)
by at least 4.5%. For the Adom data we observe that TF
outperforms both context-aware methods while for the food
data we compare against the reduction based method which
again is outperformed by the TF method by 2%.
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Figure 5: Comparison of context-aware methods on
the Adom and Food data.

5. CONCLUSIONS
Matrix Factorization is one of the most favored approaches

to Collaborative Filtering but the model is not flexible enough
to add contextual dimensions in a straightforward manner.
We have presented an extension of the model to N-dimensions
through the use of tensors. We have adapted the generic
Tensor Factorization approach to the Collaborative Filter-
ing case by adding regularization and we have shown how
this can be used to embed multiple contextual dimensions
into a coherent Multiverse Recommendation model.

In the experimental results with three datasets, we ob-
tain higher accuracy in the recommendations by taking into
account contextual variables. When comparing TF to stan-
dard non-contextual MF, we measure gains that range from
5% to almost 30% both in semi-synthetic and real-world
data. We have also shown that TF consistently outperforms
current state-of the art context-aware recommendation ap-
proaches, with performance gains ranging from 2.5% to more
than 12%. Furthermore, we have seen that the relative gain
when comparing to other methods is proportional to the
amount of contextual information available.

We believe that Multiverse Recommendations open up a
new avenue for recommender systems and we plan to fur-
ther investigate extensions of TF models for recommender
systems. In particular, we are interested on investigating
the use of the model to further explore temporal dependen-
cies in standard CF settings while also dealing with implicit
feedback. We also plan on exploring how multidimensional
TF can be used to model non-contextual variables such as
those related to content and user.
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