
XML as a means of control for audio processing,

synthesis and analysis

David Garćıa Garzón, Xavier Amatriain
{david.garcia,xavier.amatriain}@iua.upf.es

Music Technology Group
Institut Universitari de l’Audiovisual

Universitat Pompeu Fabra
http://www.iua.upf.es/˜mtg

Abstract
This paper discusses about benefits derived from providing XML support to the component based

framework for audio systems that we are developing. XML is used as data format for persistency,
visualization and inter-application interface. Direct XML support is a very useful feature for an
audio framework because of the popularity of the XML format as data interchange format, and
the introduction of MPEG7 standard, an XML based description format for multimedia content.
Formatting task has been distributed along the system objects in a compositional way, making easy
to format a single object from its parts. The system minimizes the overhead added to a class and
the programmer effort to support XML I/O. A default XML implementation has been provided
for most of the future data structures, giving the chance to customize it. The system has been
designed to be reused with other formats with a minimal impact on the system.

1 Introduction

A new component based C++[28] framework to im-
plement complex audio systems is being developed
by the Music Technology Group at the Pompeu
Fabra University. Its purpose is to share all the pro-
gramming effort done over the many applications de-
veloped within the group, and it provides a common
way of doing and reusing.

The framework models audio systems as a set of
processing entities which process data objects. Data
objects types on the system (frames, descriptors...)
are very heterogeneous in order to allow complex
processing. Such heterogeneity is managed by pro-
viding uniform handling of data objects.

Often, those data objects are to be stored per-
sistently for later processing by another application.
The persistent format for data exchange has to be
agreed between applications. XML not only pro-
vides an standard format template, but also stan-
dard ways to perform adaptations between different
concrete XML formats.

2 XML as an application inde-
pendent data format

Markup languages, like HTML, have been spread
around the net. Their main advantage is their capa-
bility to be exchanged between heterogeneous sys-
tems whatever the application and even the plat-
form. This interoperability is guaranteed by the
partnership that establishes most of the standards
that are used on the Internet content: The W3 Con-
sortium (http://www.w3.org).

So HTML has the ability to interchange infor-
mation between different platforms and applications
but it was limited to web pages presentation. Why
not extend this inter-operation ability to other ap-
plications and other types of documents? That is
the aim of the XML standard.

XML is an extendible markup language that al-
lows storing structured data conforming your own
document structure. It is a hierarchical format, so,
it can store compositional data. It is also a text
based format, so, it is readable and modifiable by
humans.

Several initiatives have taken profit from XML
in music systems. Most of them are related to music

http://www.iua.upf.es/~mtg
http://www.w3.org


notation [19, 11, 27, 23, 29], music generation [26, 5],
multimedia synchronization [6, 7, 23] and multime-
dia databases [24].

3 How does an XML document
look like

As an example, you can take a look to the following
XML document:

<?xml version=’1.0’ encoding=’ISO-8859-1’ ?>
<mainElement>
<subelement1 attribute1="attribute value">

plain content here
<subsubelement>
plain content

</subsubelement>
plain content here

</subelement1>
<subelement2 attribute2="attribute value">

<subsubelement>
plain content

</subsubelement>
<subsubelement>

plain content
</subsubelement>
<subsubelement>

plain content
</subsubelement>

</subelement2>
<emptyelement attribute="foo" />

</mainElement>

Excluding the first line which is the XML docu-
ment identifier, you can see the three main kinds of
objects in an XML document: Elements, attributes
and plain text content.

XML elements are the main hierarchical orga-
nizers. They start with an opening tag (the element
name between angles) and they end with a closing
tag (like the opening tag but having a slash before
the name).

<ElementName>
...

</ElementName>

An element can contain others elements and
plain text content between the opening and closing
tags.

<ElementName>
plain content
<ASubElement>

sub element content
</ASubElement>

</ElementName>

An element can also contain attributes inside the
opening tag. XML attributes have a name and a
value. Attribute names cannot be repeated inside a
single element while element names can.

<ElementName attributeName="value" />

The slash at the end of the previous tag is a
shortcut for closing elements when there is neither
plain text content nor sub-elements but only at-
tributes.

You can take a look to the XML specification
[10] for a more formal definition of the XML format.

XML is just a format template. You can rep-
resent the same information in many possible XML
formats. So, storing XML, by itself, does not guar-
antee interconnection. Fortunately, there is an stan-
dard, XSLT [13], that describes the way to per-
forms translations between two different XML for-
mats. XSLT is very useful to fit XML based inter-
faces.

Being XML a template for other formats, con-
crete XML formats must be specified. Two stan-
dards are defined by the W3 Consortium in order
to specify concrete XML formats: One deprecated
specification language is Document Type Definitions
(DTD). Lately, DTD has been superseded by the
more versatile XML-Schema [16]. XML Schema al-
lows to define XML data objects in a constructive
way.

4 Implementation

4.1 Goals

The goals for the XML support for the framework
can be summarized on the following ones:

• Provide XML support for new system objects
with a minimum programmer effort.

• Allow quick automatic ways to make XML able
classes

• Give mechanisms to customize XML represen-
tation to a different one that the automatically
offered

• Allow the Integration of other formats (SDIFF,
tagged text...)



4.2 Tools

XML support has not be done from scratch. The
W3C Consortium defined a language-neutral API to
deal with XML documents in memory. This API is
the DOM, the Document Object Model [22][21][20].

We have used DOM API because is the accepted
standard thought it has some major problems. The
first one is that, in order to be language-neutral,
implementations on the same language can slightly
differ. It also provides a redundant interface so that
both, object oriented and procedural languages can
implement it, but, this has the counter part that
libraries implementors tend not to provide the full
API, only one of the redundant functions.

The second one is that DOM comes from sev-
eral proprietary API’s and specification process is
too slow, so that implementors provide its own solu-
tion for unsolved problems.

The last problem, clearly derived from the pre-
vious two, is that DOM level 2 still does not specify
how to load, store and validate documents, this is
left to the implementors of libraries. DOM Level
3[20] is on progress, it will specify loading and stor-
ing and it will introduce XML-Schema aided parsing
and validation[12].

Because library related particularities are so
high, they have been isolated from the rest of the
system encapsulating library calls.

We use a library named Xerces for C++[3],
that is a C++ DOM implementation. It uses SAX
API[25] as load/store interface. We chosen Xerces
because it is an open source and highly portable li-
brary that fulfills the DOM standard very closely
and it is object oriented.

Alternatives to Xerces and the reason we did not
choose them were:

• Oracle’s XML Developer Kit: Both library
and documentation were too oriented to deal
with Oracle XML databases. [2]

• Microsoft XML: Being a MS-Windows spe-
cific library it was discarded because we wanted
a multiplatform framework. [1]

• Gnome XML: It is a portable implementation.
We did not choose it because is written in C,
it comes from an older and messy specification
and it did not implement the whole standard
API. After the decision, this library has been
improved and is becoming a great library. [4]

4.3 Storages and Storables

To achieve the goals, the designed solution is based
on the definition of several interfaces that objects can
fulfill: Storable, Storage and Component. This solu-
tions its an adaptation from pattern solutions taken
from bibliography about the serialization problem
and compositional environments [17, 18, 9].

Storage interface: A storage encapsulates a place
where the state of an object can be saved to or
retrieved from. There are a different Storage
implementation for each supported format, so,
when you store an object on a XMLStorage (the
Storage implementation for XML format) the
object is stored as XML.

Storable interface: Interface for objects to be
stored on a Storage. Also, an Storable sub-
interface for each format has been provided.
This sub-interface is used by the Storage to ex-
tract some format dependent information from
the Storable.

For the XMLStorable the Storage sub-interface
is XMLable. This interface allows to extract the
kind of XML node (element, attribute or plain
content), the name when the Storable is an ele-
ment or an attribute, and a content string.

4.4 Components

Component interface: The Component is the
base class for any object that wants to became a
member in a object composition in a way known
by the framework.

The framework can apply hierarchical opera-
tions to the composition using the Component in-
terface without worrying about object particulari-
ties. A Component can contain or be contained by
other Components. Components composition deter-
mines the application data structure which is nor-
mally mapped to an XML (or whatever format)
structure.

When an Storage accepts an Storable as a valid
one to store, it may check whether the Storable is
also a Component and if so, it ask the component to
store its components too in a recursive way.

4.5 Adapters for non-storable objects

Implementing the XML storable interface for any ob-
ject in the system is not always possible for several
reasons:



• Some simple C types cannot implement it be-
cause they are not redefinable classes.

• Some external classes can not be modified.

• Loading all classes with the overload associated
to implement the XMLable interface is often un-
desirable.

Moreover, extending the mechanism to others
formats different from XML implies that every ob-
ject must implement the MyOwnFormatStorable in-
terface, and this is far from convenient. It is better
bounding the set of the classes affected by this kind
of change.

For user confortability, a set of XML-adapters
has been defined. An adapter implements the XM-
Lable interface based on the adaptee data and some
initialization values. It also places the XML related
information (like the name and whether it is an XML
element) out of the stored object unloading it.

Currently, three kinds of adapters have been im-
plemented:

Simple types adapters: We consider a simple
type that one that implements insertion and ex-
traction operators (<< and >>) to C++ os-
treams. Most basic C types define them (int,
float, char, char* ...). Also objects created by
the framework user can define its own inser-
tion/extraction operators. Because simple type
adapters are based on such operators to extract
the XML content, they are usable with a large
amount of objects not being MTG specific.

Collection adapters: This adapter is designed to
adapt any C array of simple types without using
a huge amount of adapters objects.

Component adapters: A XMLComponentAdapter
is an adapter that it is itself a Component and
adapts a Component. So, when the storage con-
firms that the Adapter is a Component and asks
it to store its sub-items the adapter forwards the
request to its adaptee.

Although you can adapt a Component with a
simple XML adapter, the XMLStorage only sees
that the adapter is not a Component and then
it doesn’t look for sub-items.

Given those adapters, take a component and im-
plement an StoreOn method (the one that stores
sub-items) is very easy by, adapting each sub-item
and storing the adapter on the given Storage.

In a few words, each format is managed by a
different kind of storage object which uses a format-
dependent storable interface to extract and fill infor-
mation from/on the objects. Because not all objects
obey all format interfaces the system uses adapters
objects that wraps non storable objects into the
format-dependent interface.

4.6 XML and the Dynamic Types

The framework uses extensively Dynamic Types as
base for Data Objects, Configuration Objects and so.
Dynamic Types is an implementation of the Compo-
nent interface used to define data types which can
partly instantiate its attributes.

One of their main features is that dynamic types
know about its structure, mainly, the type and the
name of their attributes. So they can use them to
select an suited adapter for each attribute which type
is known and implement a general StoreOn method.

So, when you define a new Data Object, it has a
default XML implementation. This implementation
stores all the attributes being basic C data types or
Components.

This is an example of the XML fragment gener-
ated by an Spectrum object:

<Spectrum>
<Config>
<Scale>Linear</Scale>
<SpectralRange>22050</SpectralRange>
<Size>513</Size>
<Type>MagPhase</Type>

</Config>
<MagBuffer>

1.05376e-011 0.198708
...
0.198376 0.198051 0.197732
0.197419 0.197112

</MagBuffer>
<PhaseBuffer>

0 -0.0109383 -0.0218712
-0.0327933 -0.0436993
...
2.77518 2.77767 2.78015

</PhaseBuffer>
</Spectrum>

This Spectrum is a dynamic type containing
three instantiated attributes: Config which is a Dy-
namic Type containing four configuration parame-
ters for the spectrum, and two attributes, MagBuffer
and MagFase, containing magnitude and phase val-
ues.



Spectrums can contain more instantiated at-
tributes which are indicated in the Type attribute
of the configuration.

5 Applications

5.1 Handling MPEG-7 descriptors

MPEG-7 is an ISO/IEC standard developed by
MPEG (Moving Picture Experts Group), the com-
mittee that also developed the standards known as
MPEG-1, MPEG-2, MPEG-4.

MPEG-7, formally named Multimedia
Content Description Interface, aims to cre-
ate a standard for describing the multime-
dia content data that will support some de-
gree of interpretation of the information’s
meaning, which can be passed onto, or ac-
cessed by, a device or a computer applica-
tion. [14]

In short, MPEG-7 standardizes how to repre-
sent semantic and syntatic data about multimedia
content. For example, semantic data about a song
could be its author, its interpret, the title, the lyrics,
the score, the tonality, the mood, relationship with
other media, recording conditions, spectral informa-
tion, performance expressivity... XML is related to
MPEG-7 because descriptors are coded as XML doc-
uments.

Most of those descriptors are human knowledge
based, but many others can be obtained from a cute
automated analysis. Automated analyses suits the
needs of such systems that handles big amounts of
multimedia resources that can not be assisted by op-
erators.

In this sense, and because MPEG-7 descriptors
are, in fact, XML documents, supporting XML on
the framework helps the development of tools that
perform such automated analyses and store the re-
sults as MPEG-7 descriptors.

The most direct application for MPEG-7 de-
scriptors is information retrieval from multimedia
databases. RAA[8], an MTG project focused on
music recognition, will benefit directly from using
MPEG-7 descriptors in this way.

But descriptors can also be used in creative
tasks. For example, descriptors can be used as ar-
ticulation tool in order to re-synthesize audio media.
They manipulate parameters with human meaning
in order to perform some processing on the original
media.

Many other projects in our group are oriented
toward this kind of manipulation. For example,

CUIDADO and TABASCO projects address toward
the analysis, modeling and manipulation of expres-
sive performance parameters that can be encoded as
MPEG-7 descriptors.

5.2 Debugging tool

Because direct framework users would be sound sys-
tems developers, XML becomes one interesting fea-
ture used as debugging tool by providing a readable
and structured way of watching framework objects
on run-time at development stage.

This feature has been very useful during the
framework development and it will be useful too
when users will develop its own application over the
framework.

5.3 Passivating the processing state

Applications doing non-real-time audio processing
often do long lasting batch calculations. The XML
support provided to the framework allows a very di-
rect implementation of a passivation mechanism that
stores the current state of a computation.

This allows to interrupt long processing, when
the system gets heavily loaded or the machine needs
a re-boot, and then restart the process later.

Periodical computation backups in XML can se-
cure many inverted time against computer crashes.

5.4 Modular processing

On a second stage on the framework development,
a visual tool for constructing networks of intercon-
nected processing entities will be developed. The
XML support will allow saving the network as an
XML file.

Once you have designed a network you can reuse
it as a new processing entity in a different design.
Having a library of XML files defining networks
would allow rapid incremental design.

6 Conclusions

The XML support for the framework is done in a
nearly transparent way, being customizable when the
user wants to. This provides the framework with
huge possibilities interfacing with other systems; not
only systems developed within the group but also
systems developed by any other teams working on
audio systems.

We have keep open possibilities to extend this
mechanism to other formats. A very useful one will
be SDIF[15].



Future issues are supporting XML Schema by
generating automatically schemes from data object
definitions and by using them as aid to XML parsing.

7 Acknowledgements

The work reported in this paper has been partially
funded by the IST European project CUIDADO and
by the TIC national project TABASCO. Authors
also would like to thank Pau Arumı́ for its contribu-
tions on the first drafts of the design and Dynamic
Types XML integration.

References

[1] Microsoft xml sdk.
http://msdn.microsoft.com/xml.

[2] Oracle xml developer’s kits.
http://www.oracle.com/xml.

[3] Xerces c++.
http://xml.apache.org/xerces-c.

[4] The xml c library for gnome.
http://xmlsoft.org.

[5] Xavier Amatriain.
Metrix: A musical description language for a

spectral modeling based synthesizer, 1999.
http://www.iua.upf.es/˜xamat/metrix.

[6] Stephen Arnold, Carola Boehm, and Cordy
Hall.

Mutated.
January 2000.
http://www.pads.ahds.ac.uk/mutated.

[7] Jeff Ayars, Dick Bulterman, Aaron Cohen, Ken
Day, Erik Hodge, Philipp Hoschka, Eric Hy-
che, Muriel Jourdan, Michelle Kim, Kenichi
Kubota, Rob Lanphier, Nabil Layada,
Thierry Michel, Debbie Newman, Jacco van
Ossenbruggen, Lloyd Rutledge, Bridie Sac-
cocio, Patrick Schmitz, and Warner ten
Kate.

Synchronized multimedia integration language
(smil 2.0).

August 2001.
http://www.w3.org/TR/smil20.

[8] E. Batlle and P. Cano.
Automatic segmentation for music classification

using competitive hidden markov models.
In International Symposium on Music Informa-

tion Retrieval, 2000.

[9] Kent Beck.

Smalltalk Best Practice Patterns.
Prentice Hall, October 1996.

[10] Tim Bray, Jean Paoli, C. M. Sperberg, and Eve
Maler.

Xml 1.0 w3c recommendation.
October 2000.
http://www.w3.org/XML.

[11] Gerd Castan.
Musixml.
April 2000.
http://www.s-line.de/homepages/gerd castan/

compmus/MusiXML e.html.

[12] Ben Chang, Andy Heninger, Joe Kesselman,
and Rezaur Rahman.

Document object model (dom) level 3 abstract
schemas and load and save specification.

June 2001.
http://www.w3.org/TR/2001/WD-DOM-

Level-3-ASLS-20010607.

[13] James Clark.
Xsl transformations (xslt).
August 2001.
http://www.w3.org/TR/xslt11.

[14] Neil Day and José M. Mart́ınez.
Introduction to mpeg-7.
July 2001.
http://www.darmstadt.gmd.de/mobile/MPEG7.

[15] M. de Boer, J. Bonada, and X Serra.
Using the sound description interchange format

within the sms applications.
In Proceedings of International Computer Mu-

sic Conference 2000, 2000.

[16] David C. Fallside.
Xml schema w3c recommendation.
May 2001.
http://www.w3.org/XML/Schema.

[17] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides.

Design Patterns-Elements of Reusable Object-
Oriented Software.

Addison-Wesley, 1995.

[18] Adele Goldberg and D. Robson.
Smalltalk-80: The Language and Its Implemen-

tation.
Addison-Wesley, 1983.

[19] Michael Good.
Musicxml.
2001.
http://www.musicxml.org.



[20] Arnaud Le Hors, Philippe Le Hgaret, Gavin
Nicol, Lauren Wood, Mike Champion, and
Steve Byrne.

Document object model (dom) level 3 core spec-
ification.

September 2001.
http://www.w3.org/TR/2001/WD-DOM-

Level-3-Core-20010913.

[21] Arnaud Le Hors, Philippe Le Hgaret, Gavin
Nicol, Lauren Wood, Mike Champion, Steve
Byrne, and Jonathan Robie.

Document object model (dom) level 2 core spec-
ification.

November 2000.
http://www.w3.org/TR/2000/REC-DOM-

Level-2-Core-20001113.

[22] Arnaud Le Hors, Robert Sultor, Chris Wilson,
Scott Isaacs, Ian Jacobs, Gavin Nicol, Lau-
ren Wood, Mike Champion, Steve Byrne,
and Jonathan Robie.

Document object model (dom) level 1 specifica-
tion.

September 2000.
http://www.w3.org/XML/Schema.

[23] ISO/IEC.
Standard music description language (smdl).
September 1999.
http://www.ornl.gov/sgml/SC34.

[24] Robert Kaye and Johan Pouwelse.
Musicbrainz metadata initiative.
http://www.musicbrainz.org/MM.

[25] David Megginson.
Sax 2.0, simple api for xml.
http://sax.sourceforge.net.

[26] Bert Schiettecatte.
A format for virtual orchestras: Flowml.
2000.
http://wendy.vub.ac.be/˜bschiett/saol/FlowML.html.

[27] Jacques Steyn.
Music markup language.
2000.
http://www.mmlxml.org.

[28] Bjarne Stroustrup.
The C++ Programming Language.
Addison Wesley, second edition, 1991.

[29] Jeroen van Rotterdam.
Musicml, an xml experience.
1999.
http://www.tcf.nl/3.0/musicml.


	Introduction
	XML as an application independent data format
	How does an XML document look like
	Implementation
	Goals
	Tools
	Storages and Storables
	Components
	Adapters for non-storable objects
	XML and the Dynamic Types

	Applications
	Handling MPEG-7 descriptors
	Debugging tool
	Passivating the processing state
	Modular processing

	Conclusions
	Acknowledgements

