
CLAM: An OO Framework for Developing Audio and Music
Applications

Xavier Amatriain
Music Technology Group
Pompeu Fabra University

Barcelona, Spain
xamat@iua.upf.es

Maarten de Boer
Music Technology Group
Pompeu Fabra University

Barcelona, Spain
mdeboer@iua.upf.es

Enrique Robledo
Music Technology Group
Pompeu Fabra University

Barcelona, Spain
erobledo@iua.upf.es

David Garcia
Music Technology Group
Pompeu Fabra University

Barcelona, Spain
dgarcia@iua.upf.es

ABSTRACT
CLAM (C++ Library for Audio and Music) is a framework for
audio and music programming. It may be used for developing
any type of audio or music application as well as for doing more
complex research related with the field. In this paper we
introduce the practicalities of CLAM’s first release as well as
some of the sample application that have been developed within
the framework. See [1] for a more conceptual approach to the
description of the CLAM framework.

Keywords
Development framework, DSP, audio, music, GPL, free
software

1. INTRODUCTION
The Music Technology Group of the Pompeu Fabra University
is a research group where more than forty engineers and
programmers are involved in different projects in the area of
sound and music[2]. Although different tools are used most of
the research (and of course all the applications) is done
programming directly on C++.

Two years ago, it was clear that the amount of lines of code and
projects related with those were becoming hardly manageable.
Although the code had been written using an OO language, it
was highly unstructured and the result of applying kludge after
kludge. The task of getting a newcomer to understand what was
going on was almost unbearable.

The initial objective of the CLAM project was “To offer a
complete, flexible and platform independent Sound
Analysis/Synthesis C++ platform to meet current and future
needs of all MTG projects.” (quoted from CLAM’s first
Working Draft). Those initial objectives have slightly changed
since then, mainly to accommodate to the fact that the library is
no longer seen as an internal tool for the MTG but as a library
that will be licensed under the GPL (GNU Public License) terms
and conditions[3] in the course of the Agnula IST European
Project[4]. Agnula (A GNU Linux Audio distribution) plans on
offering a complete Linux distribution, both in Debian and
RedHat versions, focused on promoting the use of free software
for audio and music.

2. HOW IT WAS MADE
CLAM is programmed in C++. Code is regularly compiled with
gcc in Linux, Microsoft and Intel compilers in Windows and
Code Warrior in Windows and MacOS. We have had the chance

to test how differently compilers behave and how bad most of
them adjust to the ANSI ISO standard.

All this is specially true when it comes to the use of the most
recent C++ features, such as templates, and related techniques,
such as template metaprogramming. This techniques where
initially considered as potentially useful in the CLAM
framework, but this lack of language support in most compilers,
together with the need of optimizing the compiling speed of the
library, has led to a rather scarce use of them.

On the other hand, a technique considered obsolete as it is the
use of C macros, has proven very useful to minimize
programmer's effort and enable the implementation of rather
complex behaviors (one of the good things of developing with a
multi-paradigm language like C++ is that you can always find a
more or less immediate workaround[5]). Also, C macros are a
simple compiler feature which is available in all C++
development platforms.

3. WHAT CLAM HAS TO OFFER
At the time of this writing, around 300 C++ classes (70.000 loc)
exist in the CVS repository. Although the website [6] is up
since July 2002, the first formal public release is due in
November 2002 coinciding with the first milestone of Agnula.

CLAM brings the world of software design and engineering to
DSP developers who could care less about it. For doing so, it
offers some general infrastructure but, most importantly, it
forces users to follow some “good coding principles” and it
provides a general model for easy (re)usability. Thus, the user of
the framework only has to concentrate on writing signal
processing algorithms and, eventually, modeling new data
structures or implementing particular flow control schemes.

The core of the library is a repository of digital signal processing
algorithms related to audio and music. These algorithms can be
used for a wide range of applications but, at the time of this
writing, they are mostly related with the MTG’s research field,
which is mainly spectral analysis synthesis and transformations.
Nevertheless, the framework has been designed so that further
additions can be done without much hassle. This is mainly due
to the fact that a CLAM processing network can acknowledge
any kind of processing data as long as it complies to the required
interface (i.e. derives from ProcessingData base abstract class).

CLAM compliant data classes are the only possible input of
Processing objects and they offer some special services:
attributes can be instantiated and removed dynamically, they can
be visited as components of a composite [7], a standard

getter/setter interface is automatically derived for all of them at
compile time and, furthermore, a serialization service to XML is
also automatically provided [8].

Processing classes encapsulate all processing algorithms in a
CLAM application. They offer scalability so that any final
CLAM network can be looked at as a Processing Composite that
includes any number (and levels) of Processing components
inside. Processing objects respond to synchronous processing
data and asynchronous control events.

CLAM also offers a GUI module that allows the decoupling of
any particular third party toolkit from the system model. This
service can be used with any toolkit but it is currently being
used mostly with FLTK [9], for being this the only cross-
platform graphical toolkit that has an acceptable free software
status.

4. WHAT CLAM CAN BE USED FOR
CLAM responded to an urgent internal need for having a
structured repository of signal processing tools focused on audio
and music. For that reason, it has been used as an internal
development framework since its very beginning. Of course, our
patient users have had to cope with multiple refactoring [10]
periods that have led to the implementation of a rather complex
branching scheme on our CVS repository. But on the other
hand, we have been able to implement an spiral iteration
process, redefining requirements and redesigning our model at
each turn.

Thus, CLAM applications have been developed and have been
used as benchmarks to test the feasibility of the library. In the
following lines, the main characteristics of these applications are
outlined. All of them share the same underlying structure and
have at least a Windows and Linux version that highlights the
portability spirit of the framework.

SALTO[11] is a software based synthesizer. It is based on a
spectral modeling technique named SMS[12]. It implements a
general architecture for these synthesizers but it is currently only
prepared to produce high quality sax and trumpet synthesis. Pre-
analyzed data are loaded upon initialization. The synthesizer
responds to incoming MIDI data or to musical data stored in an
XML file. Output sound can be either stored to disk or streamed
to the sound card on real-time. Its GUI allows to modify
synthesis parameters on real-time.

Time Machine[13] is a high quality time stretching algorithm
that is already being used in some commercial products. It is a
clear example of how the core of CLAM processing can be used
in isolation as it lacks of any GUI, audio input/output...

SMS Analysis/Synthesis illustrates the core of the research
being carried out at the MTG. It is a complete rework of the
already public SMSTools application that has become flagship
of the group. Configurations are loaded from XML files. Using
these parameters the input sound can be analyzed, looked at
using the GUI, transformed and synthesized back. The result of
the analysis can be stored in MPEG-7 like XML format [14].

RAPIDD [15] has been designed for performing real-time audio
processing/transformation. It has proven to be a robust, reliable
and efficient sound processor in a live performance. A prototype

was used for accomplishing real-time morphing of a harp and a
viola in a composition by Gabriel Brnic that was performed in
the Multiphonies 2002 concert cycle at the GRM in Paris. The
GUI for that particular application was developed using QT and
it used a CLAM-based signal processing library as its sound
engine

5. ACKNOWLEDGMENTS
The work reported in this paper has been partially funded by the
IST European programs AGNULA and CUIDADO.

6. REFERENCES
[1] Amatriain, X.; Arumí, P.; Ramírez, M. CLAM, Yet

Another Library for Audio and Music Processing?. In
OOPSLA 2002 Proceedings (Companion Material).
Seattle, 2002.

[2] UPF’s MTG homepage: http://www.iua.upf.es/mtg

[3] Free Software Foundation. Gnu general public license (gpl)
terms and conditions.
http://www.gnu.org/copyleft/gpl.html.

[4] AGNULA website: http://www.agnula.org

[5] Stroustrup, B. Why C++ is not only an object-oriented
programming language. In OOPSLA'95 Proceedings
(1995)

[6] CLAM website: http://www.iua.upf.es/mtg/clam

[7] Gamma, E., Helm R., Johnson, R., and Vlissides, J. Design
Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[8] Garcia, D; Amatriain, X. XML as a means of control for
audio processing, synthesis and analysis. In Proceedings of
the MOSART Workshop on Current Research Directions in
Computer Music. Barcelona, Spain, 2001.

[9] Fast Light Toolkit Homepage: http://www.fltk.org

[10] Martin Fowler’s Refactoring homepage:
http:/www.refactoring.com

[11] Haas, J. 2001. 'SALTO - A Spectral Domain Saxophone
Synthesizer'. Proceedings of MOSART Workshop on
Current Research Directions in Computer Music. Barcelona

[12] Serra, X. 1996. Musical Sound Modeling with Sinusoids
plus Noise, in G. D. Poli, A. Picialli, S. T. Pope, and C.
Roads, editors, Musical Signal Processing. Swets &
Zeitlinger Publishers.

[13] Bonada, J. 2000. Automatic technique in frequency domain
for near-lossless time-scale modification of audio.
Proceedings of the 2000 International Computer Music
Conference. San Francisco: Computer Music Association.

[14] Martínez, J. M., Overview of the MPEG-7 Standard
http://www.cselt.it/mpeg/standards/mpeg-7/mpeg-7.htm

[15] Robledo, E. 2002. RAPPID: Robust Real Time audio
processing with CLAM. Proceedings of 5th International
Conference on Digital Audio Effects. Hamburg, German

Copyright is held by the author/owner(s).

OOPSLA’02, November 4-8, 2002, Seattle, Washington, USA.

2002 ACM 02/0011.

